BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 35743824)

  • 21. Comparative genome analysis of rice-pathogenic Burkholderia provides insight into capacity to adapt to different environments and hosts.
    Seo YS; Lim JY; Park J; Kim S; Lee HH; Cheong H; Kim SM; Moon JS; Hwang I
    BMC Genomics; 2015 May; 16(1):349. PubMed ID: 25943361
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of new regulatory genes involved in the pathogenic functions of the rice-pathogenic bacterium Burkholderia glumae.
    Melanson RA; Barphagha I; Osti S; Lelis TP; Karki HS; Chen R; Shrestha BK; Ham JH
    Microbiology (Reading); 2017 Feb; 163(2):266-279. PubMed ID: 28036242
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Seed-vectored endophytic bacteria modulate development of rice seedlings.
    Verma SK; Kingsley K; Irizarry I; Bergen M; Kharwar RN; White JF
    J Appl Microbiol; 2017 Jun; 122(6):1680-1691. PubMed ID: 28375579
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Association of Burkholderia glumae and B. gladioli with Panicle Blight Symptoms on Rice in Panama.
    Nandakumar R; Rush MC; Correa F
    Plant Dis; 2007 Jun; 91(6):767. PubMed ID: 30780491
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of Droplet Digital PCR Assay for Detection of Seed-Borne
    Zhang J; Luo J; Chen L; Ahmed T; Alotaibi SS; Wang Y; Sun G; Li B; An Q
    Microorganisms; 2022 Jun; 10(6):. PubMed ID: 35744741
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular characterization and evaluation of novel management options for Burkholderia glumae BG1, the causative agent of panicle blight of rice (Oryza sativa L.).
    Sreenayana B; Mondal KK; Mathiyalagan N; Shanmugam KN; Kumar S; Shrinivas Reddy M; Mani C
    Mol Biol Rep; 2024 Apr; 51(1):519. PubMed ID: 38625424
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Burkholderia glumae and B. gladioli Cause Bacterial Panicle Blight in Rice in the Southern United States.
    Nandakumar R; Shahjahan AKM; Yuan XL; Dickstein ER; Groth DE; Clark CA; Cartwright RD; Rush MC
    Plant Dis; 2009 Sep; 93(9):896-905. PubMed ID: 30754532
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid and Specific Detection of Burkholderia glumae in Rice Seed by Real-Time Bio-PCR Using Species-Specific Primers Based on an rhs Family Gene.
    Kim BK; Cho MS; Kim MH; Choi HJ; Kang MJ; Shim HS; Ahn TY; Kim J; Park DS
    Plant Dis; 2012 Apr; 96(4):577-580. PubMed ID: 30727429
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two New Bacterial Pathogens of Peanut, Causing Early Seedling Decline Disease, Identified in the Texas Panhandle.
    Obasa K; Haynes L
    Plant Dis; 2022 Feb; 106(2):648-653. PubMed ID: 34597146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. QTLs for Resistance to Major Rice Diseases Exacerbated by Global Warming: Brown Spot, Bacterial Seedling Rot, and Bacterial Grain Rot.
    Mizobuchi R; Fukuoka S; Tsushima S; Yano M; Sato H
    Rice (N Y); 2016 Dec; 9(1):23. PubMed ID: 27178300
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rice-Associated Rhizobacteria as a Source of Secondary Metabolites against
    Peñaloza Atuesta GC; Murillo Arango W; Eras J; Oliveros DF; Méndez Arteaga JJ
    Molecules; 2020 May; 25(11):. PubMed ID: 32486494
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolation and Characterization of Bacteriophages Infecting
    Jungkhun N; Farias ARG; Barphagha I; Patarapuwadol S; Ham JH
    Plant Dis; 2021 Sep; 105(9):2551-2559. PubMed ID: 33417498
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of major rice cultivars for resistance to bacterial seedling rot caused by
    Mizobuchi R; Fukuoka S; Tsuiki C; Tsushima S; Sato H
    Breed Sci; 2020 Apr; 70(2):221-230. PubMed ID: 32523404
    [No Abstract]   [Full Text] [Related]  

  • 34. Genetic Diversity and Distribution of Korean Isolates of
    Choi O; Kim S; Kang B; Lee Y; Bae J; Kim J
    Plant Dis; 2021 May; 105(5):1398-1407. PubMed ID: 33325743
    [No Abstract]   [Full Text] [Related]  

  • 35. The Roles of Two
    Kim J; Mannaa M; Kim N; Lee C; Kim J; Park J; Lee HH; Seo YS
    Plant Pathol J; 2018 Oct; 34(5):412-425. PubMed ID: 30369851
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Understanding
    Kim N; Lee D; Lee SB; Lim GH; Kim SW; Kim TJ; Park DS; Seo YS
    Plants (Basel); 2023 Nov; 12(23):. PubMed ID: 38068569
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A membrane protein of the rice pathogen Burkholderia glumae required for oxalic acid secretion and quorum sensing.
    Iqbal A; Nwokocha G; Tiwari V; Barphagha IK; Grove A; Ham JH; Doerrler WT
    Mol Plant Pathol; 2023 Nov; 24(11):1400-1413. PubMed ID: 37428013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dissection of quorum-sensing genes in Burkholderia glumae reveals non-canonical regulation and the new regulatory gene tofM for toxoflavin production.
    Chen R; Barphagha IK; Karki HS; Ham JH
    PLoS One; 2012; 7(12):e52150. PubMed ID: 23284909
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetic Characterization and Real-Time PCR Detection of Burkholderia glumae, a Newly Emerging Bacterial Pathogen of Rice in the United States.
    Sayler RJ; Cartwright RD; Yang Y
    Plant Dis; 2006 May; 90(5):603-610. PubMed ID: 30781136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. tepR encoding a bacterial enhancer-binding protein orchestrates the virulence and interspecies competition of Burkholderia glumae through qsmR and a type VI secretion system.
    Peng J; Lelis T; Chen R; Barphagha I; Osti S; Ham JH
    Mol Plant Pathol; 2020 Aug; 21(8):1042-1054. PubMed ID: 32608174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.