BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 35743916)

  • 1. cAMP Is a Promising Regulatory Molecule for Plant Adaptation to Heat Stress.
    Liang S; Sun J; Luo Y; Lv S; Chen J; Liu Y; Hu X
    Life (Basel); 2022 Jun; 12(6):. PubMed ID: 35743916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclic AMP mediates heat stress response by the control of redox homeostasis and ubiquitin-proteasome system.
    Paradiso A; Domingo G; Blanco E; Buscaglia A; Fortunato S; Marsoni M; Scarcia P; Caretto S; Vannini C; de Pinto MC
    Plant Cell Environ; 2020 Nov; 43(11):2727-2742. PubMed ID: 32876347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cAMP-dependent phosphorylation footprint in response to heat stress.
    Domingo G; Marsoni M; Davide E; Fortunato S; de Pinto MC; Bracale M; Molla G; Gehring C; Vannini C
    Plant Cell Rep; 2024 May; 43(6):137. PubMed ID: 38713285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives.
    Haider S; Iqbal J; Naseer S; Yaseen T; Shaukat M; Bibi H; Ahmad Y; Daud H; Abbasi NL; Mahmood T
    Plant Cell Rep; 2021 Dec; 40(12):2247-2271. PubMed ID: 33890138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Heat Stress Factor HSFA6b Connects ABA Signaling and ABA-Mediated Heat Responses.
    Huang YC; Niu CY; Yang CR; Jinn TL
    Plant Physiol; 2016 Oct; 172(2):1182-1199. PubMed ID: 27493213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant abiotic stress response and nutrient use efficiency.
    Gong Z; Xiong L; Shi H; Yang S; Herrera-Estrella LR; Xu G; Chao DY; Li J; Wang PY; Qin F; Li J; Ding Y; Shi Y; Wang Y; Yang Y; Guo Y; Zhu JK
    Sci China Life Sci; 2020 May; 63(5):635-674. PubMed ID: 32246404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unfolding molecular switches in plant heat stress resistance: A comprehensive review.
    Haider S; Iqbal J; Naseer S; Shaukat M; Abbasi BA; Yaseen T; Zahra SA; Mahmood T
    Plant Cell Rep; 2022 Mar; 41(3):775-798. PubMed ID: 34401950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analyzing the regulatory role of heat shock transcription factors in plant heat stress tolerance: a brief appraisal.
    Haider S; Raza A; Iqbal J; Shaukat M; Mahmood T
    Mol Biol Rep; 2022 Jun; 49(6):5771-5785. PubMed ID: 35182323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances in the Roles of HSFs and HSPs in Heat Stress Response in Woody Plants.
    Tian F; Hu XL; Yao T; Yang X; Chen JG; Lu MZ; Zhang J
    Front Plant Sci; 2021; 12():704905. PubMed ID: 34305991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of elevated CO
    Ahammed GJ; Guang Y; Yang Y; Chen J
    Plant Cell Rep; 2021 Dec; 40(12):2273-2286. PubMed ID: 34269828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat stress in Marchantia polymorpha: Sensing and mechanisms underlying a dynamic response.
    Marchetti F; Cainzos M; Cascallares M; Distéfano AM; Setzes N; López GA; Zabaleta E; Pagnussat GC
    Plant Cell Environ; 2021 Jul; 44(7):2134-2149. PubMed ID: 33058168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant Hormone-Mediated Regulation of Heat Tolerance in Response to Global Climate Change.
    Li N; Euring D; Cha JY; Lin Z; Lu M; Huang LJ; Kim WY
    Front Plant Sci; 2020; 11():627969. PubMed ID: 33643337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory Mechanisms of Heat Stress Response and Thermomorphogenesis in Plants.
    Zhou Y; Xu F; Shao Y; He J
    Plants (Basel); 2022 Dec; 11(24):. PubMed ID: 36559522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Safeguarding genome integrity under heat stress in plants.
    Han SH; Kim JY; Lee JH; Park CM
    J Exp Bot; 2021 Aug; ():. PubMed ID: 34343307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant heat stress: Concepts directing future research.
    Jagadish SVK; Way DA; Sharkey TD
    Plant Cell Environ; 2021 Jul; 44(7):1992-2005. PubMed ID: 33745205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress in Research on the Mechanisms Underlying Chloroplast-Involved Heat Tolerance in Plants.
    Zeng C; Jia T; Gu T; Su J; Hu X
    Genes (Basel); 2021 Aug; 12(9):. PubMed ID: 34573325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNAs as Important Regulators of Heat Stress Responses in Plants.
    Ding Y; Huang L; Jiang Q; Zhu C
    J Agric Food Chem; 2020 Oct; 68(41):11320-11326. PubMed ID: 32870674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crosstalk between abscisic acid and nitric oxide under heat stress: exploring new vantage points.
    Iqbal N; Umar S; Khan NA; Corpas FJ
    Plant Cell Rep; 2021 Aug; 40(8):1429-1450. PubMed ID: 33909122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oryza sativa heat-induced RING finger protein 1 (OsHIRP1) positively regulates plant response to heat stress.
    Kim JH; Lim SD; Jang CS
    Plant Mol Biol; 2019 Apr; 99(6):545-559. PubMed ID: 30730020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PIF4 Promotes Expression of
    Yang J; Qu X; Ji L; Li G; Wang C; Wang C; Zhang Y; Zheng L; Li W; Zheng X
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.