These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 35744131)

  • 41. The significance of phase reversion-induced nanograined/ultrafine-grained structure on the load-controlled deformation response and related mechanism in copper-bearing austenitic stainless steel.
    Hu CY; Somani MC; Misra RDK; Yang CG
    J Mech Behav Biomed Mater; 2020 Apr; 104():103666. PubMed ID: 32174424
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Strain Evolution in Cold-Warm Forged Steel Components Studied by Means of EBSD Technique.
    Ferro P; Bonollo F; Bassan F; Berto F
    Materials (Basel); 2017 Dec; 10(12):. PubMed ID: 29258249
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microstructure and Properties of Porous High-N Ni-Free Austenitic Stainless Steel Fabricated by Powder Metallurgical Route.
    Hu L; Ngai T; Peng H; Li L; Zhou F; Peng Z
    Materials (Basel); 2018 Jun; 11(7):. PubMed ID: 29932106
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Grain Size Effect on the Hot Ductility of High-Nitrogen Austenitic Stainless Steel in the Presence of Precipitates.
    Wang Z; Wang Y; Wang C
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29914141
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Designation Degree of Tool Wear after Machining of the Surface Layer of Duplex Stainless Steel.
    Dyl T
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771951
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Prediction of Crack Initiation Based on Energy Storage Rate during Low-Cycle Fatigue of Austenitic Stainless Steel.
    Grodzki W; Oliferuk W; Doroszko M; Szusta J; Urbański L
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639923
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Corrosion behavior of sensitized duplex stainless steel.
    Torres FJ; Panyayong W; Rogers W; Velasquez-Plata D; Oshida Y; Moore BK
    Biomed Mater Eng; 1998; 8(1):25-36. PubMed ID: 9713683
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Strain Range Dependent Cyclic Hardening of 08Ch18N10T Stainless Steel-Experiments and Simulations.
    Fumfera J; Halama R; Procházka R; Gál P; Španiel M
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31861206
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Corrosion properties of S-phase layers formed on medical grade austenitic stainless steel.
    Buhagiar J; Dong H
    J Mater Sci Mater Med; 2012 Feb; 23(2):271-81. PubMed ID: 22160745
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The influence of ultrafine-grained structure on the mechanical properties and biocompatibility of austenitic stainless steels.
    Rybalchenko OV; Anisimova NY; Kiselevsky MV; Belyakov AN; Tokar AA; Terent'ev VF; Prosvirnin DV; Rybalchenko GV; Raab GI; Dobatkin SV
    J Biomed Mater Res B Appl Biomater; 2020 May; 108(4):1460-1468. PubMed ID: 31617961
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Warm Pre-Strain: Strengthening the Metastable 304L Austenitic Stainless Steel without Compromising Its Hydrogen Embrittlement Resistance.
    Wang Y; Zhou Z; Wu W; Gong J
    Materials (Basel); 2017 Nov; 10(11):. PubMed ID: 29160830
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spectral and raw
    Brooks AJ; Yao Z
    Data Brief; 2017 Oct; 14():707-712. PubMed ID: 28932775
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Low velocity oxy fuel spraying of hydroxyapatite coating on a multifunctional UNS S31254 austenitic stainless steel.
    Tiwari S; Mishra SB
    Proc Inst Mech Eng H; 2021 Aug; 235(8):958-972. PubMed ID: 33962519
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microstructural changes induced near crack tip during corrosion fatigue tests in austenitic-ferritic steel.
    Gołebiowski B; Swiatnicki WA; Gaspérini M
    J Microsc; 2010 Mar; 237(3):352-8. PubMed ID: 20500395
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of the Temperature-Strain Parameters on the Structure Evolution and Carbide Transformations of Cr-Ni-Ti Stainless Steel.
    Rudskoi A; Kodzhaspirov G
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454477
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Experimental and Numerical Study of Combined High and Low Cycle Fatigue Performance of Low Alloy Steel and Engineering Application.
    Tang Z; Chen Z; He Z; Hu X; Xue H; Zhuge H
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34207465
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Novel Method for Early Fatigue Damage Diagnosis in 316L Stainless Steel Formed by Selective Laser Melting Technology.
    Yan X; Tang X
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176246
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Impact of Ball Burnished Regular Reliefs on Fatigue Life of AISI 304 and 316L Austenitic Stainless Steels.
    Slavov S; Dimitrov D; Konsulova-Bakalova M; Vasileva D
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34068034
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Production and Properties of the Porous Layer Obtained by the Electrochemical Method on the Surface of Austenitic Steel.
    Ossowska A; Ryl J; Sternicki T
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160903
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Zinc Ferrite Nanoparticle Coatings on Austenitic Alloy Steel.
    Ochmann M; Machala L; Mašláň M; Heger V; Krátký T
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.