These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 35744164)
1. First-Principles Study of Silicon-Tin Alloys as a High-Temperature Thermoelectric Material. Huang S; Ning S; Xiong R Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744164 [TBL] [Abstract][Full Text] [Related]
2. The journey of tin chalcogenides towards high-performance thermoelectrics and topological materials. Banik A; Roychowdhury S; Biswas K Chem Commun (Camb); 2018 Jun; 54(50):6573-6590. PubMed ID: 29749410 [TBL] [Abstract][Full Text] [Related]
3. Boundary Engineering for the Thermoelectric Performance of Bulk Alloys Based on Bismuth Telluride. Mun H; Choi SM; Lee KH; Kim SW ChemSusChem; 2015 Jul; 8(14):2312-26. PubMed ID: 25782971 [TBL] [Abstract][Full Text] [Related]
4. Low Lattice Thermal Conductivity in a Wider Temperature Range for Biphasic-Quaternary (Ti,V)CoSb Half-Heusler Alloys. Chauhan NS; Bhattacharjee D; Maiti T; Kolen'ko YV; Miyazaki Y; Bhattacharya A ACS Appl Mater Interfaces; 2022 Dec; 14(49):54736-54747. PubMed ID: 36450123 [TBL] [Abstract][Full Text] [Related]
5. First-principles study of the structural, optoelectronic and thermophysical properties of the π-SnSe for thermoelectric applications. Sattar MA; Al Bouzieh N; Benkraouda M; Amrane N Beilstein J Nanotechnol; 2021; 12():1101-1114. PubMed ID: 34703721 [TBL] [Abstract][Full Text] [Related]
6. Crystal structure, stability, and transport properties of Li Mahmoudi S; Golzan MM; Nemati-Kande E Sci Rep; 2024 May; 14(1):12201. PubMed ID: 38806656 [TBL] [Abstract][Full Text] [Related]
7. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Joshi G; Lee H; Lan Y; Wang X; Zhu G; Wang D; Gould RW; Cuff DC; Tang MY; Dresselhaus MS; Chen G; Ren Z Nano Lett; 2008 Dec; 8(12):4670-4. PubMed ID: 19367858 [TBL] [Abstract][Full Text] [Related]
8. Achieving Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in GeTe Alloys via Introducing Cu Zhang Q; Ti Z; Zhu Y; Zhang Y; Cao Y; Li S; Wang M; Li D; Zou B; Hou Y; Wang P; Tang G ACS Nano; 2021 Dec; 15(12):19345-19356. PubMed ID: 34734696 [TBL] [Abstract][Full Text] [Related]
9. Large thermoelectric figure-of-merits from SiGe nanowires by simultaneously measuring electrical and thermal transport properties. Lee EK; Yin L; Lee Y; Lee JW; Lee SJ; Lee J; Cha SN; Whang D; Hwang GS; Hippalgaonkar K; Majumdar A; Yu C; Choi BL; Kim JM; Kim K Nano Lett; 2012 Jun; 12(6):2918-23. PubMed ID: 22548377 [TBL] [Abstract][Full Text] [Related]
10. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Fu C; Bai S; Liu Y; Tang Y; Chen L; Zhao X; Zhu T Nat Commun; 2015 Sep; 6():8144. PubMed ID: 26330371 [TBL] [Abstract][Full Text] [Related]
11. Extraordinary Role of Bi for Improving Thermoelectrics in Low-Solubility SnTe-CdTe Alloys. Chen Z; Guo X; Tang J; Xiong F; Li W; Chen Y; Ang R ACS Appl Mater Interfaces; 2019 Jul; 11(29):26093-26099. PubMed ID: 31265233 [TBL] [Abstract][Full Text] [Related]
12. Low thermal conductivity and improved thermoelectric performance of nanocrystalline silicon germanium films by sputtering. Taborda JA; Romero JJ; Abad B; Muñoz-Rojo M; Mello A; Briones F; Gonzalez MS Nanotechnology; 2016 Apr; 27(17):175401. PubMed ID: 26967792 [TBL] [Abstract][Full Text] [Related]
13. Layered Tin Chalcogenides SnS and SnSe: Lattice Thermal Conductivity Benchmarks and Thermoelectric Figure of Merit. Rundle J; Leoni S J Phys Chem C Nanomater Interfaces; 2022 Aug; 126(33):14036-14046. PubMed ID: 36051253 [TBL] [Abstract][Full Text] [Related]
14. Ultrahigh Average Thermoelectric Figure of Merit, Low Lattice Thermal Conductivity and Enhanced Microhardness in Nanostructured (GeTe) Samanta M; Roychowdhury S; Ghatak J; Perumal S; Biswas K Chemistry; 2017 Jun; 23(31):7438-7443. PubMed ID: 28436062 [TBL] [Abstract][Full Text] [Related]
15. Enhanced in-plane thermoelectric figure of merit in p-type SiGe thin films by nanograin boundaries. Lu J; Guo R; Dai W; Huang B Nanoscale; 2015 Apr; 7(16):7331-9. PubMed ID: 25824614 [TBL] [Abstract][Full Text] [Related]
16. Symmetry Breaking Induced Anisotropic Carrier Transport and Remarkable Thermoelectric Performance in Mixed Halide Perovskites CsPb(I Yan L; Wang M; Zhai C; Zhao L; Lin S ACS Appl Mater Interfaces; 2020 Sep; 12(36):40453-40464. PubMed ID: 32790315 [TBL] [Abstract][Full Text] [Related]
17. Effect of C and N Addition on Thermoelectric Properties of TiNiSn Half-Heusler Compounds. Dow HS; Kim WS; Shin WH Materials (Basel); 2018 Feb; 11(2):. PubMed ID: 29419772 [TBL] [Abstract][Full Text] [Related]
18. New and Recent Results for Thermoelectric Energy Conversion in Graded Alloys at Nanoscale. Cimmelli VA; Rogolino P Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889601 [TBL] [Abstract][Full Text] [Related]
19. Investigation of PbSnTeSe High-Entropy Thermoelectric Alloy: A DFT Approach. Xia M; Record MC; Boulet P Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614578 [TBL] [Abstract][Full Text] [Related]
20. Enhanced Thermoelectric Performance in n-Type SrTiO Wang J; Li JB; Yu HY; Li J; Yang H; Yaer X; Wang XH; Liu HM ACS Appl Mater Interfaces; 2020 Jan; 12(2):2687-2694. PubMed ID: 31860262 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]