These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35744219)

  • 41. Observation of ferromagnetic resonance in SrRuO3 by the time-resolved magneto-optical Kerr effect.
    Langner MC; Kantner CL; Chu YH; Martin LM; Yu P; Seidel J; Ramesh R; Orenstein J
    Phys Rev Lett; 2009 May; 102(17):177601. PubMed ID: 19518833
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impedance of nanometer thickness ferromagnetic Co40Fe40B20 films.
    Jen SU; Chou TY; Lo CK
    Nanoscale Res Lett; 2011 Jul; 6(1):468. PubMed ID: 21781336
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A setup combining magneto-optical Kerr effect and conversion electron Mössbauer spectrometry for analysis of the near-surface magnetic properties of thin films.
    Juraszek J; Zivotsky O; Chiron H; Vaudolon C; Teillet J
    Rev Sci Instrum; 2009 Apr; 80(4):043905. PubMed ID: 19405673
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Temperature dependences of magnetoimpedance of nanocrystalline Fe-based ribbons.
    Semirov AV; Bukreev DA; Moiseev AA; Volchkov SO; Kurlyandskaya GV; Lukshina VA; Volkova EG
    J Nanosci Nanotechnol; 2012 Sep; 12(9):7446-50. PubMed ID: 23035492
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Low-Field Microwave Absorption in EMR Spectra for Ni
    Dubiel Ł; Stefaniuk I; Wal A
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079398
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cantilever detected ferromagnetic resonance in thin Fe50Ni50, Co2FeAl0.5Si0.5 and Sr2FeMoO6 films using a double modulation technique.
    Alfonsov A; Ohmichi E; Leksin P; Omar A; Wang H; Wurmehl S; Yang F; Ohta H
    J Magn Reson; 2016 Sep; 270():183-186. PubMed ID: 27498338
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dynamic magnetic susceptibility and electrical detection of ferromagnetic resonance.
    Zhang Y; Wang XS; Yuan HY; Kang SS; Zhang HW; Wang XR
    J Phys Condens Matter; 2017 Mar; 29(9):095806. PubMed ID: 28129202
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microwave spin resonance investigation on the effect of the post-processing annealing of CoFe
    Kumar P; Pathak S; Singh A; Khanduri H; Basheed GA; Wang L; Pant RP
    Nanoscale Adv; 2020 May; 2(5):1939-1948. PubMed ID: 36132523
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Temperature-Dependent Phase Evolution in FePt-Based Nanocomposite Multiple-Phased Magnetic Alloys.
    Crisan O; Crisan AD; Randrianantoandro N
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500745
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A broadband ferromagnetic resonance dipper probe for magnetic damping measurements from 4.2 K to 300 K.
    He S; Panagopoulos C
    Rev Sci Instrum; 2016 Apr; 87(4):043110. PubMed ID: 27131657
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microwave soft x-ray microscopy for nanoscale magnetization dynamics in the 5-10 GHz frequency range.
    Bonetti S; Kukreja R; Chen Z; Spoddig D; Ollefs K; Schöppner C; Meckenstock R; Ney A; Pinto J; Houanche R; Frisch J; Stöhr J; Dürr HA; Ohldag H
    Rev Sci Instrum; 2015 Sep; 86(9):093703. PubMed ID: 26429444
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Observation of the transition state of domain wall displacement and GMI effect of FINEMET/graphene composite ribbons.
    Zou J; Chen Y; Li X; Song Y; Zhao Z
    RSC Adv; 2019 Nov; 9(67):39133-39142. PubMed ID: 35540672
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of Magnetostatic Interactions in FeNi-Based Multilayered Magnetoimpedance Elements.
    Melnikov GY; Komogortsev SV; Svalov AV; Gorchakovskiy AA; Vazhenina IG; Kurlyandskaya GV
    Sensors (Basel); 2024 Sep; 24(19):. PubMed ID: 39409348
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Epitaxially grown BaM hexaferrite films having uniaxial axis in the film plane for self-biased devices.
    Zhang X; Meng S; Song D; Zhang Y; Yue Z; Harris VG
    Sci Rep; 2017 Mar; 7():44193. PubMed ID: 28276492
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microwave properties of ferromagnetic nanostructures.
    Valenzuela R; Alvarez G; Mata-Zamora ME
    J Nanosci Nanotechnol; 2008 Jun; 8(6):2827-35. PubMed ID: 18681018
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Magnetoimpedance of Epitaxial Y
    Medwal R; Chaudhuri U; Vas JV; Deka A; Gupta S; Duchamp M; Asada H; Fukuma Y; Mahendiran R; Rawat RS
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41802-41809. PubMed ID: 32819087
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review.
    Morón C; Cabrera C; Morón A; García A; González M
    Sensors (Basel); 2015 Nov; 15(11):28340-66. PubMed ID: 26569244
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Detection of L-band electron paramagnetic resonance in the DPPH molecule using impedance measurements.
    Chaudhuri U; Mahendiran R
    RSC Adv; 2020 Apr; 10(29):17311-17316. PubMed ID: 35521463
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Magnetic impedance biosensor: A review.
    Wang T; Zhou Y; Lei C; Luo J; Xie S; Pu H
    Biosens Bioelectron; 2017 Apr; 90():418-435. PubMed ID: 27825890
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Giant Stress Impedance Magnetoelastic Sensors Employing Soft Magnetic Amorphous Ribbons.
    Beato-López JJ; Urdániz-Villanueva JG; Pérez-Landazábal JI; Gómez-Polo C
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32397310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.