BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 35744243)

  • 1. Boosting Lithium Storage of a Metal-Organic Framework via Zinc Doping.
    Gou W; Xu Z; Lin X; Sun Y; Han X; Liu M; Zhang Y
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tetrathiafulvalene-Based Metal-Organic Framework as a High-Performance Anode for Lithium-Ion Batteries.
    Weng YG; Yin WY; Jiang M; Hou JL; Shao J; Zhu QY; Dai J
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52615-52623. PubMed ID: 33170613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zinc/Nickel-Doped Hollow Core-Shell Co
    Han Y; Li J; Zhang T; Qi P; Li S; Gao X; Zhou J; Feng X; Wang B
    Chemistry; 2018 Feb; 24(7):1651-1656. PubMed ID: 29168912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MOF-Derived Hybrid Hollow Submicrospheres of Nitrogen-Doped Carbon-Encapsulated Bimetallic Ni-Co-S Nanoparticles for Supercapacitors and Lithium Ion Batteries.
    Yi M; Zhang C; Cao C; Xu C; Sa B; Cai D; Zhan H
    Inorg Chem; 2019 Mar; 58(6):3916-3924. PubMed ID: 30816702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of Ni@NiSn Composite with High Lithium-Ion Diffusion Coefficient for Fast-Charging Lithium-Ion Batteries.
    Zhao H; Chen J; Wei W; Ke S; Zeng X; Chen D; Lin P
    Glob Chall; 2020 Mar; 4(3):1900073. PubMed ID: 32140253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing Lithium and Sodium Storage Properties of TiO
    Opra DP; Gnedenkov SV; Sinebryukhov SL; Gerasimenko AV; Ziatdinov AM; Sokolov AA; Podgorbunsky AB; Ustinov AY; Kuryavyi VG; Mayorov VY; Tkachenko IA; Sergienko VI
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34203554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ternary Lithium Nickel Boride with 1D Rapid-Ion-Diffusion Channels as an Anode for Use in Lithium-Ion Batteries.
    Liu W; Zong K; Ghani U; Saad A; Liu D; Deng Y; Raza W; Li Y; Hussain A; Ye P; Song Z; Cai X
    Small; 2024 May; 20(20):e2309918. PubMed ID: 38084467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical Nitrogen-Doped Porous Carbon Microspheres as Anode for High Performance Sodium Ion Batteries.
    Xu K; Pan Q; Zheng F; Zhong G; Wang C; Wu S; Yang C
    Front Chem; 2019; 7():733. PubMed ID: 31737606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cobalt- and Cadmium-Based Metal-Organic Frameworks as High-Performance Anodes for Sodium Ion Batteries and Lithium Ion Batteries.
    Dong C; Xu L
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7160-7168. PubMed ID: 28166402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revealing the unique process of alloying reaction in Ni-Co-Sb/C nanosphere anode for high-performance lithium storage.
    Wang L; Zhu L; Zhang W; Ding G; Yang G; Xie L; Cao X
    J Colloid Interface Sci; 2021 Mar; 586():730-740. PubMed ID: 33198986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Performance of a New Zn
    Chchiyai Z; El Ghali O; Lahmar A; Alami J; Manoun B
    Molecules; 2023 Oct; 28(20):. PubMed ID: 37894488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Green Synthesis of CoZn-Based Metal-Organic Framework (CoZn-MOF) from Waste Polyethylene Terephthalate Plastic As a High-Performance Anode for Lithium-Ion Battery Applications.
    Wang Y; Meng K; Wang H; Si Y; Bai K; Sun S
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):819-832. PubMed ID: 38117931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Ni Doping Content on Phase Transition and Electrochemical Performance of TiO
    Kang D; Li J; Zhang Y
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32183088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulating the Electronic Configuration of Spinel Zinc Manganate Derived from Metal-Organic Frameworks: Controlled Synthesis and Application in Anode Materials for Lithium-Ion Batteries.
    Du W; Liu J; Zeb A; Lin X
    ACS Appl Mater Interfaces; 2022 Aug; 14(33):37652-37666. PubMed ID: 35960813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen and sulfur co-doped vanadium carbide MXene for highly reversible lithium-ion storage.
    Zhang Y; Li J; Gong Z; Xie J; Lu T; Pan L
    J Colloid Interface Sci; 2021 Apr; 587():489-498. PubMed ID: 33387843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple Active Sites: Lithium Storage Mechanism of Cu-TCNQ as an Anode Material for Lithium-Ion Batteries.
    Meng C; Chen T; Fang C; Huang Y; Hu P; Tong Y; Bian T; Zhang J; Wang Z; Yuan A
    Chem Asian J; 2019 Dec; 14(23):4289-4295. PubMed ID: 31612624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid thermal deposited GeSe nanowires as a promising anode material for lithium-ion and sodium-ion batteries.
    Wang K; Liu M; Huang D; Li L; Feng K; Zhao L; Li J; Jiang F
    J Colloid Interface Sci; 2020 Jul; 571():387-397. PubMed ID: 32213356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-Organic Framework Glass Anode with an Exceptional Cycling-Induced Capacity Enhancement for Lithium-Ion Batteries.
    Gao C; Jiang Z; Qi S; Wang P; Jensen LR; Johansen M; Christensen CK; Zhang Y; Ravnsbaek DB; Yue Y
    Adv Mater; 2022 Mar; 34(10):e2110048. PubMed ID: 34969158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphology-dependent electrochemical performance of Ni-1,3,5-benzenetricarboxylate metal-organic frameworks as an anode material for Li-ion batteries.
    Gan Q; He H; Zhao K; He Z; Liu S
    J Colloid Interface Sci; 2018 Nov; 530():127-136. PubMed ID: 29966845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.