These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 35744314)

  • 1. Insight into a Nitrogen-Doping Mechanism in a Hard-Carbon-Microsphere Anode Material for the Long-Term Cycling of Potassium-Ion Batteries.
    Chen C; Zhao K; La M; Yang C
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrogen and Fluorine Dual Doping of Soft Carbon Nanofibers as Advanced Anode for Potassium Ion Batteries.
    Zhong YL; Dai WX; Liu D; Wang W; Wang LT; Xie JP; Li R; Yuan QL; Hong G
    Small; 2021 Oct; 17(43):e2101576. PubMed ID: 34155817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen and Oxygen Co-Doped Porous Hard Carbon Nanospheres with Core-Shell Architecture as Anode Materials for Superior Potassium-Ion Storage.
    Chong S; Yuan L; Li T; Shu C; Qiao S; Dong S; Liu Z; Yang J; Liu HK; Dou SX; Huang W
    Small; 2022 Feb; 18(8):e2104296. PubMed ID: 34873861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N/O Dual-Doped Environment-Friendly Hard Carbon as Advanced Anode for Potassium-Ion Batteries.
    Cui RC; Xu B; Dong HJ; Yang CC; Jiang Q
    Adv Sci (Weinh); 2020 Mar; 7(5):1902547. PubMed ID: 32154071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium/Potassium-Ion Batteries: Boosting the Rate Capability and Cycle Life by Combining Morphology, Defect and Structure Engineering.
    Huang H; Xu R; Feng Y; Zeng S; Jiang Y; Wang H; Luo W; Yu Y
    Adv Mater; 2020 Feb; 32(8):e1904320. PubMed ID: 31943439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetic Metal-Organic Frameworks Derived Highly Nitrogen-Doped Porous Carbon for Superior Potassium Storage.
    Tong H; Wang C; Lu J; Chen S; Yang K; Huang M; Yuan Q; Chen Q
    Small; 2020 Oct; 16(43):e2002771. PubMed ID: 33015902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfur-Doped Carbon for Potassium-Ion Battery Anode: Insight into the Doping and Potassium Storage Mechanism of Sulfur.
    Qiu D; Zhang B; Zhang T; Shen T; Zhao Z; Hou Y
    ACS Nano; 2022 Dec; 16(12):21443-21451. PubMed ID: 36484831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-Confined SnS
    Li D; Sun Q; Zhang Y; Chen L; Wang Z; Liang Z; Si P; Ci L
    ChemSusChem; 2019 Jun; 12(12):2689-2700. PubMed ID: 30997950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enlarged interlayer spacing and enhanced capacitive behavior of a carbon anode for superior potassium storage.
    Shi X; Zhang Y; Xu G; Guo S; Pan A; Zhou J; Liang S
    Sci Bull (Beijing); 2020 Dec; 65(23):2014-2021. PubMed ID: 36659060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogen-Doped Carbon for Red Phosphorous Based Anode Materials for Lithium Ion Batteries.
    Li J; Qian Y; Wang L; He X
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29342917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boron-Doped Pine-Cone Carbon With 3D Interconnected Porosity for Use as an Anode for Potassium-Ion Batteries With Long Life Cycle.
    Lu JF; Li KC; Lv XY; Kuai HX; Su J; Wen YX
    Front Chem; 2022; 10():953782. PubMed ID: 35873058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the Prussian Blue Analog Co
    Deng L; Yang Z; Tan L; Zeng L; Zhu Y; Guo L
    Adv Mater; 2018 Aug; 30(31):e1802510. PubMed ID: 29931774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scalable synthesis of N/S co-doped hard carbon microspheres as a high-performance anode material for sodium-ion batteries.
    Zhang Z; Huang B; Lai T; Sheng A; Zhong S; Yang J; Li Y
    Nanotechnology; 2023 Dec; 35(11):. PubMed ID: 38081064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Capacity and Rate Capability of Nitrogen/Oxygen Dual-Doped Hard Carbon in Capacitive Potassium-Ion Storage.
    Yang J; Ju Z; Jiang Y; Xing Z; Xi B; Feng J; Xiong S
    Adv Mater; 2018 Jan; 30(4):. PubMed ID: 29215156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expanding Interlayer Spacing of Hard Carbon by Natural K
    Wu F; Liu L; Yuan Y; Li Y; Bai Y; Li T; Lu J; Wu C
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27030-27038. PubMed ID: 30020762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen-Doped Carbon-Coating Disproportionated SiO Materials as Long Cycling Stable Anode for Lithium Ion Batteries.
    Huang B; Chu B; Huang T; Yu A
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33799687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Turbostratic Lattice and Electronegativity Modification Jointly Enabled an Ultra-High-Rate and Long-Lived Carbon Anode for Potassium-Ion Batteries.
    Wang D; Lian J; Wang Y; Jia P; Gao F
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15585-15594. PubMed ID: 36917253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-negligible Influence of Oxygen in Hard Carbon as an Anode Material for Potassium-Ion Batteries.
    Liu Z; Wu S; Song Y; Yang T; Ma Z; Tian X; Liu Z
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47674-47684. PubMed ID: 36223510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries.
    Xu Y; Zhang C; Zhou M; Fu Q; Zhao C; Wu M; Lei Y
    Nat Commun; 2018 Apr; 9(1):1720. PubMed ID: 29712922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrrhotite Fe
    Xu Y; Bahmani F; Wei R
    Microsyst Nanoeng; 2020; 6():75. PubMed ID: 34567685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.