These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 3574434)
21. Preliminary field trials with Culicinomyces clavosporus against some Egyptian mosquitoes in selected habitats. Seif AI; Shaarawi FA J Egypt Soc Parasitol; 2003 Apr; 33(1):291-304. PubMed ID: 12739818 [TBL] [Abstract][Full Text] [Related]
22. Laboratory studies on the recycling potential of the mosquito pathogenic fungus Culicinomyces clavisporus. Cooper RD; Sweeney AW J Invertebr Pathol; 1986 Sep; 48(2):152-8. PubMed ID: 3745928 [No Abstract] [Full Text] [Related]
23. Simple method to detect and to isolate entomopathogenic fungi (Hypocreales) from mosquito larvae. Rodrigues J; Bergamini C; Montalva C; Humber RA; Luz C J Invertebr Pathol; 2021 Jun; 182():107581. PubMed ID: 33798556 [TBL] [Abstract][Full Text] [Related]
24. Laboratory evaluation of biotic and abiotic factors that may influence larvicidal activity of Bacillus thuringiensis serovar. israelensis against two Florida mosquito species. Nayar JK; Knight JW; Ali A; Carlson DB; O'Bryan PD J Am Mosq Control Assoc; 1999 Mar; 15(1):32-42. PubMed ID: 10342266 [TBL] [Abstract][Full Text] [Related]
25. Laboratory and semi-field evaluation of Mosquito Dunks against Aedes aegypti and Aedes albopictus larvae (Diptera: Culicidae). Fansiri T; Thavara U; Tawatsin A; Krasaesub S; Sithiprasasna R Southeast Asian J Trop Med Public Health; 2006 Jan; 37(1):62-6. PubMed ID: 16771214 [TBL] [Abstract][Full Text] [Related]
26. Efficacy of the vegetative cells of Lysinibacillus sphaericus for biological control of insecticide-resistant Aedes aegypti. Rojas-Pinzón PA; Dussán J Parasit Vectors; 2017 May; 10(1):231. PubMed ID: 28490350 [TBL] [Abstract][Full Text] [Related]
27. Combination of Mesocyclops thermocyclopoides and Bacillus thuringiensis var. israelensis: a better approach for the control of Aedes aegypti larvae in water containers. Chansang UR; Bhumiratana A; Kittayapong P J Vector Ecol; 2004 Dec; 29(2):218-26. PubMed ID: 15707281 [TBL] [Abstract][Full Text] [Related]
28. Efficacy of Czechoslovak and Soviet Bacillus thuringiensis (serotype H-14) formulations against mosquito larvae. Rettich F J Hyg Epidemiol Microbiol Immunol; 1987; 31(1):53-63. PubMed ID: 2883232 [TBL] [Abstract][Full Text] [Related]
29. Bacterial microbiota of Aedes aegypti mosquito larvae is altered by intoxication with Bacillus thuringiensis israelensis. Tetreau G; Grizard S; Patil CD; Tran FH; Tran Van V; Stalinski R; Laporte F; Mavingui P; Després L; Valiente Moro C Parasit Vectors; 2018 Mar; 11(1):121. PubMed ID: 29499735 [TBL] [Abstract][Full Text] [Related]
30. [The pathogens of Taiwan mosquitoes--Coelomomyces species]. Lien JC; Lin YN Gaoxiong Yi Xue Ke Xue Za Zhi; 1990 Jul; 6(7):350-9. PubMed ID: 1976138 [TBL] [Abstract][Full Text] [Related]
31. Ovicidal activity of entomopathogenic hyphomycetes on Aedes aegypti (Diptera: Culicidae) under laboratory conditions. Luz C; Tai MH; Santos AH; Rocha LF; Albernaz DA; Silva HH J Med Entomol; 2007 Sep; 44(5):799-804. PubMed ID: 17915511 [TBL] [Abstract][Full Text] [Related]
32. Isolation of fungi from dead arthropods and identification of a new mosquito natural pathogen. Jaber S; Mercier A; Knio K; Brun S; Kambris Z Parasit Vectors; 2016 Sep; 9(1):491. PubMed ID: 27595597 [TBL] [Abstract][Full Text] [Related]
33. Infection of adult Aedes aegypti and Ae. albopictus mosquitoes with the entomopathogenic fungus Metarhizium anisopliae. Scholte EJ; Takken W; Knols BG Acta Trop; 2007 Jun; 102(3):151-8. PubMed ID: 17544354 [TBL] [Abstract][Full Text] [Related]
34. Evaluating the Vector Control Potential of the In2Care® Mosquito Trap Against Aedes aegypti and Aedes albopictus Under Semifield Conditions in Manatee County, Florida. Buckner EA; Williams KF; Marsicano AL; Latham MD; Lesser CR J Am Mosq Control Assoc; 2017 Sep; 33(3):193-199. PubMed ID: 28854105 [TBL] [Abstract][Full Text] [Related]
35. Efficacy of Bacillus thuringiensis (H-14) for larval Aedes mosquito control in intermountain meadows in Wyoming. Jones CJ; Lloyd JE J Am Mosq Control Assoc; 1985 Mar; 1(1):51-5. PubMed ID: 3880213 [TBL] [Abstract][Full Text] [Related]
36. Preliminary field trials with the entomopathogenic hyphomycete Tolypocladium cylindrosporum in central Alberta. Goettel MS J Am Mosq Control Assoc; 1987 Jun; 3(2):239-45. PubMed ID: 2904947 [TBL] [Abstract][Full Text] [Related]
37. Increased abundance, size, and longevity of food-deprived mosquito populations exposed to a fungal larvicide. Wilson ML; Agudelo-Silva F; Spielman A Am J Trop Med Hyg; 1990 Nov; 43(5):551-6. PubMed ID: 2240376 [TBL] [Abstract][Full Text] [Related]
38. Efficacy of encapsulated Lagenidium giganteum (Oomycetes: Lagenidiales) against Culex quinquefasciatus and Aedes aegypti larvae in artificial containers. Rueda LM; Patel KJ; Axtell RC J Am Mosq Control Assoc; 1990 Dec; 6(4):694-9. PubMed ID: 2098480 [TBL] [Abstract][Full Text] [Related]
39. Eco-virological survey of Aedes mosquito larvae in selected dengue outbreak areas in Malaysia. Rohani A; Aidil Azahary AR; Malinda M; Zurainee MN; Rozilawati H; Wan Najdah WM; Lee HL J Vector Borne Dis; 2014 Dec; 51(4):327-32. PubMed ID: 25540966 [TBL] [Abstract][Full Text] [Related]
40. The effects of larval density, temperature and pH on the culture growth and infectivity of Saprolegnian sp. zoospores to Aedes aegypti larvae at various instars in the laboratory. Nnakumusana ES Indian J Med Sci; 1986 Mar; 40(3):57-62. PubMed ID: 3759180 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]