BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 35744348)

  • 1. Machine Learning-Based Void Percentage Analysis of Components Fabricated with the Low-Cost Metal Material Extrusion Process.
    Zhang Z; Fidan I
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical, Electrical, and Thermal Characterization of Pure Copper Parts Manufactured via Material Extrusion Additive Manufacturing.
    Cañadilla A; Romero A; Rodríguez GP; Caminero MÁ; Dura ÓJ
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fused Filament Fabrication for Metallic Materials: A Brief Review.
    Costa JM; Sequeiros EW; Vieira MF
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Indirect Induction Sintering of Metal Parts Produced through Material Extrusion Additive Manufacturing.
    Ortega Varela de Seijas M; Bardenhagen A; Rohr T; Stoll E
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison between Micro-Powder Injection Molding and Material Extrusion Additive Manufacturing of Metal Powders for the Fabrication of Sintered Components.
    Siedlecki K; Słoma M; Skalski A
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning to determine the main factors affecting creep rates in laser powder bed fusion.
    Sanchez S; Rengasamy D; Hyde CJ; Figueredo GP; Rothwell B
    J Intell Manuf; 2021; 32(8):2353-2373. PubMed ID: 34720456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active learning for prediction of tensile properties for material extrusion additive manufacturing.
    Nasrin T; Pourali M; Pourkamali-Anaraki F; Peterson AM
    Sci Rep; 2023 Jul; 13(1):11460. PubMed ID: 37454171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Additive Manufacturing Technologies of High Entropy Alloys (HEA): Review and Prospects.
    Ron T; Shirizly A; Aghion E
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Printing, Debinding and Sintering of 15-5PH Stainless Steel Components by Fused Deposition Modeling Additive Manufacturing.
    Chang G; Zhang X; Ma F; Zhang C; Xu L
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Density, Roughness, and Accuracy of the Atomic Diffusion Additive Manufacturing (ADAM) Process for Metal Parts.
    Galati M; Minetola P
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31835380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing metal part distortion in the material extrusion-thermal debinding-sintering process: An experimental and numerical study.
    Wei X; Li X; Bähr R
    Heliyon; 2024 Apr; 10(7):e28899. PubMed ID: 38596038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comparative Investigation of Properties of Metallic Parts Additively Manufactured through MEX and PBF-LB/M Technologies.
    Kluczyński J; Jasik K; Łuszczek J; Sarzyński B; Grzelak K; Dražan T; Joska Z; Szachogłuchowicz I; Płatek P; Małek M
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Review of the Metal Additive Manufacturing Processes.
    Tebianian M; Aghaie S; Razavi Jafari NS; Elmi Hosseini SR; Pereira AB; Fernandes FAO; Farbakhti M; Chen C; Huo Y
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution.
    Putra NE; Mirzaali MJ; Apachitei I; Zhou J; Zadpoor AA
    Acta Biomater; 2020 Jun; 109():1-20. PubMed ID: 32268239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of high gravity on properties of parts fabricated using material extrusion system by additive manufacturing.
    Jiang X; Koike R
    Heliyon; 2024 Jun; 10(11):e32161. PubMed ID: 38947488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digitisation of metal AM for part microstructure and property control.
    Dogu MN; McCarthy E; McCann R; Mahato V; Caputo A; Bambach M; Ahad IU; Brabazon D
    Int J Mater Form; 2022; 15(3):30. PubMed ID: 35509322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Process Parameter Optimization of Extrusion-Based 3D Metal Printing Utilizing PW-LDPE-SA Binder System.
    Ren L; Zhou X; Song Z; Zhao C; Liu Q; Xue J; Li X
    Materials (Basel); 2017 Mar; 10(3):. PubMed ID: 28772665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Additive Manufacturing of Porous Sound Absorbers-A Machine-Learning Approach.
    Kuschmitz S; Ring TP; Watschke H; Langer SC; Vietor T
    Materials (Basel); 2021 Apr; 14(7):. PubMed ID: 33916316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Additively Manufactured Polymer-Ceramic Parts Obtained via Different Technologies.
    Jasik K; Kluczyński J; Miedzińska D; Popławski A; Łuszczek J; Zygmuntowicz J; Piotrkiewicz P; Perkowski K; Wachowski M; Grzelak K
    Materials (Basel); 2024 Jan; 17(1):. PubMed ID: 38204093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Achieving better connections between deposited lines in additive manufacturing via machine learning.
    Jiang JC; Yu CL; Xu X; Ma YS; Liu JK
    Math Biosci Eng; 2020 Apr; 17(4):3382-3394. PubMed ID: 32987534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.