BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35744351)

  • 1. Assessment of Alkali-Silica Reaction Potential in Aggregates from Iran and Australia Using Thin-Section Petrography and Expansion Testing.
    Kazemi P; Nikudel MR; Khamehchiyan M; Giri P; Taheri S; Clark SM
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High resolution transmission soft X-ray microscopy of deterioration products developed in large concrete dams.
    Kurtis KE; Monteiro PJ; Brown JT; Meyer-Ilse W
    J Microsc; 1999 Dec; 196 (Pt 3)():288-98. PubMed ID: 10594769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alkali-Silica Reactivity of High Density Aggregates for Radiation Shielding Concrete.
    Jóźwiak-Niedźwiedzka D; Glinicki MA; Gibas K; Baran T
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30445670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential of Alkali-Silica Reactivity of Unexplored Local Aggregates as per ASTM C1260.
    Abbas S; Hussain I; Aslam F; Ahmed A; Gillani SAA; Shabbir A; Deifalla AF
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Review on Alkali-Silica Reaction Evolution in Recycled Aggregate Concrete.
    Barreto Santos M; De Brito J; Santos Silva A
    Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32526866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microstructural Changes Due to Alkali-Silica Reaction during Standard Mortar Test.
    Shin JH; Struble LJ; Kirkpatrick RJ
    Materials (Basel); 2015 Dec; 8(12):8292-8303. PubMed ID: 28793711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of Glaukonite Sandstone as a Result of Alkali-Silica Reactions in Cement Mortar.
    Czapik P
    Materials (Basel); 2018 May; 11(6):. PubMed ID: 29848958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of Image Analysis to Identify Quartz Grains in Heavy Aggregates Susceptible to ASR in Radiation Shielding Concrete.
    Jóźwiak-Niedźwiedzka D; Jaskulski R; Glinicki MA
    Materials (Basel); 2016 Mar; 9(4):. PubMed ID: 28773362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The presence of ettringite in concrete affected by alkali-silica reaction and its potential use as recycled aggregate.
    Piersanti M; Shehata MH
    J Microsc; 2022 May; 286(2):168-173. PubMed ID: 35218226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Microstructure Simulation of Reactive Aggregate in Concrete from 2D Images as the Basis for ASR Simulation.
    Qiu X; Chen J; Deprez M; Cnudde V; Ye G; De Schutter G
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34071472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expansion of Dolomitic Rocks in TMAH and NaOH Solutions and Its Root Causes.
    Yuan H; Deng M; Chen B; Chen W; Mao Z
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential of Waste Marble Sludge for Repressing Alkali-Silica Reaction in Concrete with Reactive Aggregates.
    Ahmed A; Abbas S; Abbass W; Waheed A; Razzaq A; Ali E; Deifalla AF
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effectiveness of Ternary Blend Incorporating Rice Husk Ash, Silica Fume, and Cement in Preparing ASR Resilient Concrete.
    Ahmed A; Ameer S; Abbas S; Abbass W; Razzaq A; Mohamed AM; Mohamed A
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Aggregate Grain Size on ASR-Induced Expansion.
    Zapała-Sławeta J
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recycled Untreated Rubber Waste for Controlling the Alkali-Silica Reaction in Concrete.
    Abbas S; Ahmed A; Waheed A; Abbass W; Yousaf M; Shaukat S; Alabduljabbar H; Awad YA
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of Alkali-Silica Reaction: Application to Sandstone.
    Yang Y; Deng M; Mo L; Li W
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quartzite Mining Waste: Diagnosis of ASR Alkali-Silica Reaction in Mortars and Portland Cement Concrete.
    Francklin I; Ribeiro RP; Corrêa FA
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between Degree of Deformation in Quartz and Silica Dissolution for the Development of Alkali-Silica Reaction in Concrete.
    Tiecher F; Gomes MEB; Dal Molin DCC; Hasparyk NP; Monteiro PJM
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28869559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alkali Release from Aggregates in Long-Service Concrete Structures: Laboratory Test Evaluation and ASR Prediction.
    Berra M; Mangialardi T; Paolini AE
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30096924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Expansion Cracks of Dolomitic Aggregates Cured in TMAH Solution Caused by Alkali⁻Carbonate Reaction.
    Chen X; Yang B; Mao Z; Deng M
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 30991652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.