These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 35744419)
1. Machine Learning Approaches for Monitoring of Tool Wear during Grey Cast-Iron Turning. Tabaszewski M; Twardowski P; Wiciak-Pikuła M; Znojkiewicz N; Felusiak-Czyryca A; Czyżycki J Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744419 [TBL] [Abstract][Full Text] [Related]
2. Tool Wear Prediction Based on Artificial Neural Network during Aluminum Matrix Composite Milling. Wiciak-Pikuła M; Felusiak-Czyryca A; Twardowski P Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33066308 [TBL] [Abstract][Full Text] [Related]
3. A Novel Machine Learning-Based Methodology for Tool Wear Prediction Using Acoustic Emission Signals. Ferrando Chacón JL; Fernández de Barrena T; García A; Sáez de Buruaga M; Badiola X; Vicente J Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502874 [TBL] [Abstract][Full Text] [Related]
4. Tool Condition Monitoring of the Cutting Capability of a Turning Tool Based on Thermography. Brili N; Ficko M; Klančnik S Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34641006 [TBL] [Abstract][Full Text] [Related]
5. Multivariate time series data of milling processes with varying tool wear and machine tools. Denkena B; Klemme H; Stiehl TH Data Brief; 2023 Oct; 50():109574. PubMed ID: 37808546 [TBL] [Abstract][Full Text] [Related]
6. Estimation and Optimization of Tool Wear in Conventional Turning of 709M40 Alloy Steel Using Support Vector Machine (SVM) with Bayesian Optimization. Alajmi MS; Almeshal AM Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300691 [TBL] [Abstract][Full Text] [Related]
7. Automatic Identification of Tool Wear Based on Thermography and a Convolutional Neural Network during the Turning Process. Brili N; Ficko M; Klančnik S Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33803442 [TBL] [Abstract][Full Text] [Related]
8. Using the Machine Vision Method to Develop an On-machine Insert Condition Monitoring System for Computer Numerical Control Turning Machine Tools. Sun WH; Yeh SS Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30322197 [TBL] [Abstract][Full Text] [Related]
9. System for Tool-Wear Condition Monitoring in CNC Machines under Variations of Cutting Parameter Based on Fusion Stray Flux-Current Processing. Jaen-Cuellar AY; Osornio-Ríos RA; Trejo-Hernández M; Zamudio-Ramírez I; Díaz-Saldaña G; Pacheco-Guerrero JP; Antonino-Daviu JA Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960525 [TBL] [Abstract][Full Text] [Related]
10. Transfer Learning-Based Condition Monitoring of Single Point Cutting Tool. Naveen Venkatesh S; Arun Balaji P; Elangovan M; Annamalai K; Indira V; Sugumaran V; Mahamuni VS Comput Intell Neurosci; 2022; 2022():3205960. PubMed ID: 35875754 [TBL] [Abstract][Full Text] [Related]
11. Optimization and Analysis of Surface Roughness, Flank Wear and 5 Different Sensorial Data via Tool Condition Monitoring System in Turning of AISI 5140. Kuntoğlu M; Aslan A; Sağlam H; Pimenov DY; Giasin K; Mikolajczyk T Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32764450 [TBL] [Abstract][Full Text] [Related]
12. Investigation of the Influence of Anti-Wear Coatings on the Surface Quality and Dimensional Accuracy during Finish Turning of the Inconel 718 Alloy. Smak K; Szablewski P; Legutko S; Krawczyk B; Miko E Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676452 [TBL] [Abstract][Full Text] [Related]
13. Magnetohydrodynamic-based Internal Cooling System for a Ceramic Cutting Tool: Concept Design, Numerical Study, and Experimental Evalidation. O'Hara J; Fang F Nanomanuf Metrol; 2023; 6(1):33. PubMed ID: 37649923 [TBL] [Abstract][Full Text] [Related]
14. Tool Wear Prediction in Ti-6Al-4V Machining through Multiple Sensor Monitoring and PCA Features Pattern Recognition. Caggiano A Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29522443 [TBL] [Abstract][Full Text] [Related]
15. A Novel Multi-Task Learning Model with PSAE Network for Simultaneous Estimation of Surface Quality and Tool Wear in Milling of Nickel-Based Superalloy Haynes 230. Cheng M; Jiao L; Yan P; Gu H; Sun J; Qiu T; Wang X Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808436 [TBL] [Abstract][Full Text] [Related]
16. Comparative Evaluation of Surface Quality, Tool Wear, and Specific Cutting Energy for Wiper and Conventional Carbide Inserts in Hard Turning of AISI 4340 Alloy Steel. Abbas AT; Anwar S; Hegab H; Benyahia F; Ali H; Elkaseer A Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33228121 [TBL] [Abstract][Full Text] [Related]
17. Tool Wear Monitoring in Milling Based on Fine-Grained Image Classification of Machined Surface Images. Yang J; Duan J; Li T; Hu C; Liang J; Shi T Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366114 [TBL] [Abstract][Full Text] [Related]
18. Experimental data-set for prediction of tool wear during turning of Al-1061 alloy by high speed steel cutting tools. Okokpujie IP; Ohunakin OS; Bolu CA; Okokpujie KO Data Brief; 2018 Jun; 18():1196-1203. PubMed ID: 29900294 [TBL] [Abstract][Full Text] [Related]
19. A Novel Order Analysis and Stacked Sparse Auto-Encoder Feature Learning Method for Milling Tool Wear Condition Monitoring. Ou J; Li H; Huang G; Zhou Q Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32438608 [TBL] [Abstract][Full Text] [Related]
20. A Review of Indirect Tool Condition Monitoring Systems and Decision-Making Methods in Turning: Critical Analysis and Trends. Kuntoğlu M; Aslan A; Pimenov DY; Usca ÜA; Salur E; Gupta MK; Mikolajczyk T; Giasin K; Kapłonek W; Sharma S Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]