BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35744437)

  • 1. Dual U-Net-Based Conditional Generative Adversarial Network for Blood Vessel Segmentation with Reduced Cerebral MR Training Volumes.
    Quintana-Quintana OJ; De León-Cuevas A; González-Gutiérrez A; Gorrostieta-Hurtado E; Tovar-Arriaga S
    Micromachines (Basel); 2022 May; 13(6):. PubMed ID: 35744437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vessel segmentation from volumetric images: a multi-scale double-pathway network with class-balanced loss at the voxel level.
    Chen Y; Fan S; Chen Y; Che C; Cao X; He X; Song X; Zhao F
    Med Phys; 2021 Jul; 48(7):3804-3814. PubMed ID: 33969487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generating 3D TOF-MRA volumes and segmentation labels using generative adversarial networks.
    Subramaniam P; Kossen T; Ritter K; Hennemuth A; Hildebrand K; Hilbert A; Sobesky J; Livne M; Galinovic I; Khalil AA; Fiebach JB; Frey D; Madai VI
    Med Image Anal; 2022 May; 78():102396. PubMed ID: 35231850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward Sharing Brain Images: Differentially Private TOF-MRA Images With Segmentation Labels Using Generative Adversarial Networks.
    Kossen T; Hirzel MA; Madai VI; Boenisch F; Hennemuth A; Hildebrand K; Pokutta S; Sharma K; Hilbert A; Sobesky J; Galinovic I; Khalil AA; Fiebach JB; Frey D
    Front Artif Intell; 2022; 5():813842. PubMed ID: 35586223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IAS-NET: Joint intraclassly adaptive GAN and segmentation network for unsupervised cross-domain in neonatal brain MRI segmentation.
    Li B; You X; Wang J; Peng Q; Yin S; Qi R; Ren Q; Hong Z
    Med Phys; 2021 Nov; 48(11):6962-6975. PubMed ID: 34494276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesizing anonymized and labeled TOF-MRA patches for brain vessel segmentation using generative adversarial networks.
    Kossen T; Subramaniam P; Madai VI; Hennemuth A; Hildebrand K; Hilbert A; Sobesky J; Livne M; Galinovic I; Khalil AA; Fiebach JB; Frey D
    Comput Biol Med; 2021 Apr; 131():104254. PubMed ID: 33618105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Placental Vessel Segmentation Using Pix2pix Compared to U-Net.
    van der Schot A; Sikkel E; Niekolaas M; Spaanderman M; de Jong G
    J Imaging; 2023 Oct; 9(10):. PubMed ID: 37888333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A cGAN-based tumor segmentation method for breast ultrasound images.
    You G; Qin Y; Zhao C; Zhao Y; Zhu K; Yang X; Li YL
    Phys Med Biol; 2023 Jun; 68(13):. PubMed ID: 37276866
    [No Abstract]   [Full Text] [Related]  

  • 9. BV-GAN: 3D time-of-flight magnetic resonance angiography cerebrovascular vessel segmentation using adversarial CNNs.
    Amran D; Artzi M; Aizenstein O; Ben Bashat D; Bermano AH
    J Med Imaging (Bellingham); 2022 Jul; 9(4):044503. PubMed ID: 36061214
    [No Abstract]   [Full Text] [Related]  

  • 10. Hippocampal subfields segmentation in brain MR images using generative adversarial networks.
    Shi Y; Cheng K; Liu Z
    Biomed Eng Online; 2019 Jan; 18(1):5. PubMed ID: 30665408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-supervised generative adversarial networks for the segmentation of the left ventricle in pediatric MRI.
    Decourt C; Duong L
    Comput Biol Med; 2020 Aug; 123():103884. PubMed ID: 32658792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DENSE-INception U-net for medical image segmentation.
    Zhang Z; Wu C; Coleman S; Kerr D
    Comput Methods Programs Biomed; 2020 Aug; 192():105395. PubMed ID: 32163817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebrovascular segmentation from TOF-MRA based on multiple-U-net with focal loss function.
    Guo X; Xiao R; Lu Y; Chen C; Yan F; Zhou K; He W; Wang Z
    Comput Methods Programs Biomed; 2021 Apr; 202():105998. PubMed ID: 33618143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Road crack segmentation using an attention residual U-Net with generative adversarial learning.
    Hu X; Yao M; Zhang D
    Math Biosci Eng; 2021 Nov; 18(6):9669-9684. PubMed ID: 34814362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The optimisation of deep neural networks for segmenting multiple knee joint tissues from MRIs.
    Kessler DA; MacKay JW; Crowe VA; Henson FMD; Graves MJ; Gilbert FJ; Kaggie JD
    Comput Med Imaging Graph; 2020 Dec; 86():101793. PubMed ID: 33075675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the Performance of Generative Adversarial Networks for Prostate Tissue Detection and Segmentation.
    Cem Birbiri U; Hamidinekoo A; Grall A; Malcolm P; Zwiggelaar R
    J Imaging; 2020 Aug; 6(9):. PubMed ID: 34460740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DS6, Deformation-Aware Semi-Supervised Learning: Application to Small Vessel Segmentation with Noisy Training Data.
    Chatterjee S; Prabhu K; Pattadkal M; Bortsova G; Sarasaen C; Dubost F; Mattern H; de Bruijne M; Speck O; Nürnberger A
    J Imaging; 2022 Sep; 8(10):. PubMed ID: 36286353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks.
    Gaj S; Yang M; Nakamura K; Li X
    Magn Reson Med; 2020 Jul; 84(1):437-449. PubMed ID: 31793071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-sequence MR image-based synthetic CT generation using a generative adversarial network for head and neck MRI-only radiotherapy.
    Qi M; Li Y; Wu A; Jia Q; Li B; Sun W; Dai Z; Lu X; Zhou L; Deng X; Song T
    Med Phys; 2020 Apr; 47(4):1880-1894. PubMed ID: 32027027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic Meniscus Segmentation Using Adversarial Learning-Based Segmentation Network with Object-Aware Map in Knee MR Images.
    Jeon U; Kim H; Hong H; Wang J
    Diagnostics (Basel); 2021 Sep; 11(9):. PubMed ID: 34573953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.