These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35744462)

  • 1. A Linear-Arc Composite Beam Piezoelectric Energy Harvester Modeling and Finite Element Analysis.
    Zhang X; Guo Y; Zhu F; Chen X; Tian H; Xu H
    Micromachines (Basel); 2022 May; 13(6):. PubMed ID: 35744462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear Segmented Arc-Shaped Piezoelectric Branch Beam Energy Harvester for Ultra-Low Frequency Vibrations.
    Piyarathna IE; Thabet AM; Ucgul M; Lemckert C; Lim YY; Tang ZS
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37299984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Curve-Shaped Beam Bistable Piezoelectric Energy Harvester with Variable Potential Well: Modeling and Numerical Simulation.
    Chen X; Zhang X; Chen L; Guo Y; Zhu F
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Piezoelectric Performance of a Symmetrical Ring-Shaped Piezoelectric Energy Harvester Using PZT-5H under a Temperature Gradient.
    Zhou N; Li R; Ao H; Zhang C; Jiang H
    Micromachines (Basel); 2020 Jun; 11(7):. PubMed ID: 32610622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Output Performance of a Novel Symmetrical T-Shaped Trapezoidal Micro Piezoelectric Energy Harvester Using a PZT-5H.
    Xu W; Ao H; Zhou N; Song Z; Jiang H
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Optimization of Piezoelectric Cantilever Beam Vibration Energy Harvester.
    Xu Q; Gao A; Li Y; Jin Y
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and evaluation of a monostable symmetric piezoelectric energy harvester based on cantilever structure and magnetic excitation action.
    Wang L; Zhang Y; Wang T
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38727573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Study on Magnetic Coupling Piezoelectric-Electromagnetic Composite Galloping Energy Harvester.
    Li X; Ma T; Liu B; Wang C; Su Y
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wind-Speed-Adaptive Resonant Piezoelectric Energy Harvester for Offshore Wind Energy Collection.
    Wu W; Pan Z; Zhou J; Wang Y; Ma J; Li J; Hu Y; Wen J; Wang X
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38474906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-frequency, broadband piezoelectric vibration energy harvester with folded trapezoidal beam.
    Wang H; Li B; Liu Y; Zhao W
    Rev Sci Instrum; 2019 Mar; 90(3):035001. PubMed ID: 30927805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Tri-Stable Piezoelectric Vibration Energy Harvester for Composite Shape Beam: Nonlinear Modeling and Analysis.
    Zhang X; Zuo M; Yang W; Wan X
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32131499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of Nonlinear Piezoelectric Energy Harvester for Low-Frequency and Wideband Applications.
    Pertin O; Guha K; Jakšić O; Jakšić Z; Iannacci J
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Modeling and Experimental Validation of an Impact-Driven Piezoelectric Energy Harvester in Magnetic Field.
    Chen CD; Wu YH; Su PW
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33138234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of output characteristics of positive feedback piezoelectric energy harvester based on nonlinear magnetic coupling.
    Shi R; Chen J; Ma T; Li C; Zhang W; Ye D
    Rev Sci Instrum; 2024 Jun; 95(6):. PubMed ID: 38836718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical Analysis of Signal Response Characteristic of Piezoelectric Energy Harvesters Embedded in Pavement.
    Yang H; Zhao Q; Guo X; Zhang W; Liu P; Wang L
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32570889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Power Density Improvement of Piezoelectric Energy Harvesters via a Novel Hybridization Scheme with Electromagnetic Transduction.
    Li Z; Xin C; Peng Y; Wang M; Luo J; Xie S; Pu H
    Micromachines (Basel); 2021 Jul; 12(7):. PubMed ID: 34357213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research and analysis of an energy harvester of piezoelectric cantilever beam based on nonlinear magnetic action.
    Gu X; He L; Yu G; Liu L; Zhou J; Cheng G
    Rev Sci Instrum; 2022 Jan; 93(1):015001. PubMed ID: 35104973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Method for Parameter Identification of Composite Beam Piezoelectric Energy Harvester.
    Zhang X; Zhang C; Wang L; Chen L; Chen X; Xu D; Fan H; Zhu F
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, Manufacture and Test of Piezoelectric Cantilever-Beam Energy Harvesters with Hollow Structures.
    Wang B; Zhang C; Lai L; Dong X; Li Y
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on the Critical Wind Speed of a Resonant Cavity Piezoelectric Energy Harvester Driven by Driving Wind Pressure.
    Li X; Li Z; Liu Q; Shan X
    Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31805751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.