BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 35744492)

  • 1. Trojan pH-Sensitive Polymer Particles Produced in a Continuous-Flow Capillary Microfluidic Device Using Water-in-Oil-in-Water Double-Emulsion Droplets.
    Larrea A; Arruebo M; Serra CA; Sebastián V
    Micromachines (Basel); 2022 May; 13(6):. PubMed ID: 35744492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic conceived Trojan microcarriers for oral delivery of nanoparticles.
    Khan IU; Serra CA; Anton N; Er-Rafik M; Blanck C; Schmutz M; Kraus I; Messaddeq N; Sutter C; Anton H; Klymchenko AS; Vandamme TF
    Int J Pharm; 2015 Sep; 493(1-2):7-15. PubMed ID: 26116014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. G-CSF loaded biodegradable PLGA nanoparticles prepared by a single oil-in-water emulsion method.
    Choi SH; Park TG
    Int J Pharm; 2006 Mar; 311(1-2):223-8. PubMed ID: 16423477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymer type effect on PLGA-based microparticles preparation by solvent evaporation method with single emulsion system using focussed beam reflectance measurement.
    Muhaimin M; Chaerunisaa AY; Bodmeier R
    J Microencapsul; 2022 Sep; 39(6):512-521. PubMed ID: 36089916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silicon microfluidic flow focusing devices for the production of size-controlled PLGA based drug loaded microparticles.
    Keohane K; Brennan D; Galvin P; Griffin BT
    Int J Pharm; 2014 Jun; 467(1-2):60-9. PubMed ID: 24680950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High precision microfluidic microencapsulation of bacteriophages for enteric delivery.
    Vinner GK; Malik DJ
    Res Microbiol; 2018 Nov; 169(9):522-530. PubMed ID: 29886256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Matryoshka-type gastro-resistant microparticles for the oral treatment of Mycobacterium tuberculosis.
    Andreu V; Larrea A; Rodriguez-Fernandez P; Alfaro S; Gracia B; Lucía A; Usón L; Gomez AC; Mendoza G; Lacoma A; Dominguez J; Prat C; Sebastian V; Ainsa JA; Arruebo M
    Nanomedicine (Lond); 2019 Mar; 14(6):707-726. PubMed ID: 30734643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced encapsulation and bioavailability of breviscapine in PLGA microparticles by nanocrystal and water-soluble polymer template techniques.
    Wang H; Zhang G; Ma X; Liu Y; Feng J; Park K; Wang W
    Eur J Pharm Biopharm; 2017 Jun; 115():177-185. PubMed ID: 28263795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the microencapsulation method and peptide loading on poly(lactic acid) and poly(lactic-co-glycolic acid) degradation during in vitro testing.
    Witschi C; Doelker E
    J Control Release; 1998 Feb; 51(2-3):327-41. PubMed ID: 9685930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional polymeric microparticles engineered from controllable microfluidic emulsions.
    Wang W; Zhang MJ; Chu LY
    Acc Chem Res; 2014 Feb; 47(2):373-84. PubMed ID: 24199893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structured Biodegradable Polymeric Microparticles for Drug Delivery Produced Using Flow Focusing Glass Microfluidic Devices.
    Ekanem EE; Nabavi SA; Vladisavljević GT; Gu S
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):23132-43. PubMed ID: 26423218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioactive Hybrid Particles from Poly(D,L-lactide-co-glycolide) Nanoparticle Stabilized Lipid Droplets.
    Joyce P; Whitby CP; Prestidge CA
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17460-70. PubMed ID: 26181279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction in burst release after coating poly(D,L-lactide-co-glycolide) (PLGA) microparticles with a drug-free PLGA layer.
    Ahmed AR; Elkharraz K; Irfan M; Bodmeier R
    Pharm Dev Technol; 2012; 17(1):66-72. PubMed ID: 20854130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The roadmap to micro: Generation of micron-sized polymeric particles using a commercial microfluidic system.
    Cruz-Acuña M; Kakwere H; Lewis JS
    J Biomed Mater Res A; 2022 May; 110(5):1121-1133. PubMed ID: 35073454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dexamethasone acetate encapsulation into Trojan particles.
    Gómez-Gaete C; Fattal E; Silva L; Besnard M; Tsapis N
    J Control Release; 2008 May; 128(1):41-9. PubMed ID: 18374442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of poly (lactic-co-glycolic acid)-poly ethyleneimine-plasmid DNA microparticles prepared using double emulsion methods.
    Zhang XQ; Intra J; Salem AK
    J Microencapsul; 2008 Feb; 25(1):1-12. PubMed ID: 18188727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translating the fabrication of protein-loaded poly(lactic-co-glycolic acid) nanoparticles from bench to scale-independent production using microfluidics.
    Roces CB; Christensen D; Perrie Y
    Drug Deliv Transl Res; 2020 Jun; 10(3):582-593. PubMed ID: 31919746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Encapsulation of a highly hydrophilic drug in polymeric particles: A comparative study of batch and microfluidic processes.
    Aboelela SS; Ibrahim M; Badruddoza AZM; Tran V; Ferri JK; Roper TD
    Int J Pharm; 2021 Sep; 606():120906. PubMed ID: 34298100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colon-targeted delivery of cyclosporine A using dual-functional Eudragit
    Naeem M; Bae J; Oshi MA; Kim MS; Moon HR; Lee BL; Im E; Jung Y; Yoo JW
    Int J Nanomedicine; 2018; 13():1225-1240. PubMed ID: 29535519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly (lactic-co-glycolic acid) particles prepared by microfluidics and conventional methods. Modulated particle size and rheology.
    Perez A; Hernández R; Velasco D; Voicu D; Mijangos C
    J Colloid Interface Sci; 2015 Mar; 441():90-7. PubMed ID: 25490568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.