These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35744513)

  • 1. Fabrication of High Precision Silicon Spherical Microlens Arrays by Hot Embossing Process.
    Sun Q; Tang J; Shen L; Lan J; Shen Z; Xiao J; Chen X; Zhang J; Wu Y; Xu J; Wang X
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of Large-Area Silicon Spherical Microlens Arrays by Thermal Reflow and ICP Etching.
    Wu Y; Dong X; Wang X; Xiao J; Sun Q; Shen L; Lan J; Shen Z; Xu J; Du Y
    Micromachines (Basel); 2024 Mar; 15(4):. PubMed ID: 38675271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manufacturing of a microlens array mold by a two-step method combining microindentation and precision polishing.
    Zhang L; Yi AY
    Appl Opt; 2020 Aug; 59(23):6945-6952. PubMed ID: 32788785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variable focus convex microlens array on K9 glass substrate based on femtosecond laser processing and hot embossing lithography.
    Chen Z; Yuan H; Wu P; Zhang W; Juodkazis S; Huang H; Cao X
    Opt Lett; 2022 Jan; 47(1):22-25. PubMed ID: 34951873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid fabrication of thermoplastic polymer refractive microlens array using contactless hot embossing technology.
    Xie D; Chang X; Shu X; Wang Y; Ding H; Liu Y
    Opt Express; 2015 Feb; 23(4):5154-66. PubMed ID: 25836549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replication of a glass microlens array using a vitreous carbon mold.
    Kim YK; Ju JH; Kim SM
    Opt Express; 2018 Jun; 26(12):14936-14944. PubMed ID: 30114798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Warpage and Residual Stress of Precision Glass Micro-Optics Heated by Carbide-Bonded Graphene Coating in Hot Embossing Process.
    Li L; Zhou J
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33535579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Hexagonal Microlens Arrays on Single-Crystal Silicon Using the Tool-Servo Driven Segment Turning Method.
    Mukaida M; Yan J
    Micromachines (Basel); 2017 Oct; 8(11):. PubMed ID: 30400513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mask-Moving-Lithography-Based High-Precision Surface Fabrication Method for Microlens Arrays.
    Gong J; Zhou J; Liu J; Hu S; Wang J; Sun H
    Micromachines (Basel); 2024 Feb; 15(2):. PubMed ID: 38399017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of plastic microlens arrays using hybrid extrusion rolling embossing with a metallic cylinder mold fabricated using dry film resist.
    Jiang LT; Huang TC; Chiu CR; Chang CY; Yang SY
    Opt Express; 2007 Sep; 15(19):12088-94. PubMed ID: 19547573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of a Micro-Lens Array Mold by Micro Ball End-Milling and Its Hot Embossing.
    Gao P; Liang Z; Wang X; Zhou T; Xie J; Li S; Shen W
    Micromachines (Basel); 2018 Feb; 9(3):. PubMed ID: 30424030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of a Hot-Embossing Metal Micro-Mold through Laser Shock Imprinting.
    Yang H; Hao J; Wang H; Ding M
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of large area resin microlens arrays using gas-assisted ultraviolet embossing.
    Huang PH; Huang TC; Sun YT; Yang SY
    Opt Express; 2008 Mar; 16(5):3041-8. PubMed ID: 18542390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Fabrication of Wafer-Level Microlens Array with Moth-Eye Antireflective Nanostructures.
    Xie S; Wan X; Yang B; Zhang W; Wei X; Zhuang S
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31096627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling and experimental performance analysis of a novel heating system and its application to glass hot embossing technology.
    Li L; Chan MK; Lee WB; Ng MC; Chan KL
    Opt Lett; 2019 Jul; 44(14):3454-3457. PubMed ID: 31305546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of a polyurethane acrylate/polyimide-based polymer mold for a hot embossing process.
    Kim KI; Han KS; Yang KY; Kim HS; Lee H
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3417-20. PubMed ID: 22849136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of Chalcogenide Glass Based Hexagonal Gapless Microlens Arrays via Combining Femtosecond Laser Assist Chemical Etching and Precision Glass Molding Processes.
    Zhang F; Yang Q; Bian H; Li M; Hou X; Chen F
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32784658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of Polymethyl Methacrylate (PMMA) Hydrophilic Surfaces Using Combined Offset-Tool-Servo Flycutting and Hot Embossing Methods.
    Wang J; Wang Y; Zhang G; Xu B; Zhao Z; Yin T
    Polymers (Basel); 2023 Nov; 15(23):. PubMed ID: 38231962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of interface thermal resistance on surface morphology evolution in precision glass molding for microlens array.
    Xie J; Zhou T; Ruan B; Du Y; Wang X
    Appl Opt; 2017 Aug; 56(23):6622-6630. PubMed ID: 29047954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micropattern array with gradient size (µPAGS) plastic surfaces fabricated by PDMS (polydimethylsiloxane) mold-based hot embossing technique for investigation of cell-surface interaction.
    Choi MJ; Park JY; Cha KJ; Rhie JW; Cho DW; Kim DS
    Biofabrication; 2012 Dec; 4(4):045006. PubMed ID: 23075468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.