These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35744525)

  • 1. Revisiting Defect-Induced Light Field Enhancement in Optical Thin Films.
    Ling X; Chen X; Liu X
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light Field Intensification in Optical Films Induced by Intercoupling of Defects and Organic Contamination.
    Chen X; Ling XL; Liu J; Liu XF
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser intensification by spherical inclusions embedded within multilayer coatings.
    Stolz CJ; Feit MD; Pistor TV
    Appl Opt; 2006 Mar; 45(7):1594-601. PubMed ID: 16539268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal and spatial laser intensification within nodular defects overcoated with multilayer dielectric mirrors over a wide range of defect geometries.
    Stolz CJ; Feigenbaum E
    Appl Opt; 2023 Mar; 62(7):B25-B34. PubMed ID: 37132883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical interference on the measurement of film-depth-dependent light absorption spectroscopy and a correction approach.
    Lu G; Shen Z; Wang H; Bu L; Lu G
    Rev Sci Instrum; 2023 Feb; 94(2):023907. PubMed ID: 36859049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of defects on long-pulse laser-induced damage of two kinds of optical thin films.
    Wang B; Qin Y; Ni X; Shen Z; Lu J
    Appl Opt; 2010 Oct; 49(29):5537-44. PubMed ID: 20935699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical manipulation and defect creation in a liquid crystal on a photoresponsive surface.
    Habibpourmoghadam A; Jiao L; Reshetnyak V; Evans DR; Lorenz A
    Phys Rev E; 2017 Aug; 96(2-1):022701. PubMed ID: 28950540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic measurement of absorptive thin films by spectral-domain optical coherence tomography.
    Ho TS; Yeh P; Tsai CC; Hsu KY; Huang SL
    Opt Express; 2014 Mar; 22(5):5675-83. PubMed ID: 24663908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defect-Induced Tunable Permittivity of Epsilon-Near-Zero in Indium Tin Oxide Thin Films.
    Lian J; Zhang D; Hong R; Qiu P; Lv T; Zhang D
    Nanomaterials (Basel); 2018 Nov; 8(11):. PubMed ID: 30405091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterning of periodic nano-cavities on PEDOT-PSS using nanosphere-assisted near-field optical enhancement and laser interference lithography.
    Yuan D; Lasagni A; Hendricks JL; Martin DC; Das S
    Nanotechnology; 2012 Jan; 23(1):015304. PubMed ID: 22155970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Writing subwavelength-sized structures into aluminium films by thermo-chemical aperture-less near-field optical microscopy.
    Haefliger D; Stemmer A
    Ultramicroscopy; 2004 Aug; 100(3-4):457-64. PubMed ID: 15231339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metasurface-assisted broadband optical absorption in ultrathin perovskite films.
    He J; Zhou Y; Li CY; Xiong B; Jing H; Peng R; Wang M
    Opt Express; 2021 Jun; 29(12):19170-19182. PubMed ID: 34154158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic investigation on light intensification by typical subsurface cracks on optical glass surfaces.
    Zhang L; Chen W; Hu L
    Appl Opt; 2013 Feb; 52(5):980-9. PubMed ID: 23400059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the dielectric substrate on the effective optical constants of silver plasmonic films.
    Perera MNMN; Schmidt D; Gibbs WEK; Juodkazis S; Stoddart PR
    Appl Opt; 2019 Aug; 58(22):6038-6044. PubMed ID: 31503924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of relaxor PLZT thin films as resonant optical waveguides and the temperature dependence of their refractive index.
    Sabat RG; Rochon P
    Appl Opt; 2009 May; 48(14):2649-54. PubMed ID: 19424385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral data of refractive index and extinction coefficient for thin films of titanium group metals used for fabrication of optical microstructures.
    Belousov DA; Terent'ev VS; Spesivtsev EV; Korolkov VP
    Data Brief; 2020 Feb; 28():104903. PubMed ID: 31853473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interference and resonant cavity effects explain enhanced transmission through subwavelength apertures in thin metal films.
    Flammer PD; Schick IC; Collins RT; Hollingsworth RE
    Opt Express; 2007 Jun; 15(13):7984-93. PubMed ID: 19547126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TRACK--A new method for the evaluation of low-level extinction coefficient in optical films.
    Vernhes R; Martinu L
    Opt Express; 2015 Nov; 23(22):28501-21. PubMed ID: 26561121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic layer deposition for fabrication of HfO2/Al2O3 thin films with high laser-induced damage thresholds.
    Wei Y; Pan F; Zhang Q; Ma P
    Nanoscale Res Lett; 2015; 10():44. PubMed ID: 25852341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of Antireflection Nb₂O₅ Thin Films by the Sputtering Method under Different Deposition Parameters.
    Chen KN; Hsu CM; Liu J; Liou YC; Yang CF
    Micromachines (Basel); 2016 Sep; 7(9):. PubMed ID: 30404326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.