These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35744608)

  • 1. Achieving "Non-Foaming" Rhamnolipid Production and Productivity Rebounds of
    Gong Z; He Q; Liu J; Zhou J; Che C; Si M; Yang G
    Microorganisms; 2022 May; 10(6):. PubMed ID: 35744608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximize rhamnolipid production with low foaming and high yield.
    Sodagari M; Invally K; Ju LK
    Enzyme Microb Technol; 2018 Mar; 110():79-86. PubMed ID: 29310859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhamnolipid production by a gamma ray-induced Pseudomonas aeruginosa mutant under solid state fermentation.
    El-Housseiny GS; Aboshanab KM; Aboulwafa MM; Hassouna NA
    AMB Express; 2019 Jan; 9(1):7. PubMed ID: 30617633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhamnolipid production, characterization and fermentation scale-up by Pseudomonas aeruginosa with plant oils.
    Gong Z; Peng Y; Wang Q
    Biotechnol Lett; 2015 Oct; 37(10):2033-8. PubMed ID: 26087946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization and scale-up of the production of rhamnolipid by Pseudomonas aeruginosa in solid-state fermentation using high-density polyurethane foam as an inert support.
    Gong Z; He Q; Che C; Liu J; Yang G
    Bioprocess Biosyst Eng; 2020 Mar; 43(3):385-392. PubMed ID: 31724063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foaming of rhamnolipids fermentation: impact factors and fermentation strategies.
    Gong Z; Yang G; Che C; Liu J; Si M; He Q
    Microb Cell Fact; 2021 Mar; 20(1):77. PubMed ID: 33781264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent progress towards industrial rhamnolipids fermentation: Process optimization and foam control.
    Jiang J; Zu Y; Li X; Meng Q; Long X
    Bioresour Technol; 2020 Feb; 298():122394. PubMed ID: 31757615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repeated pH-stat fed-batch fermentation for rhamnolipid production with indigenous Pseudomonas aeruginosa S2.
    Chen SY; Wei YH; Chang JS
    Appl Microbiol Biotechnol; 2007 Aug; 76(1):67-74. PubMed ID: 17457541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial conversion of agro-processing waste (peanut meal) to rhamnolipid by Pseudomonas aeruginosa: solid-state fermentation, water extraction, medium optimization and potential applications.
    Zhao F; Zheng M; Xu X
    Bioresour Technol; 2023 Feb; 369():128426. PubMed ID: 36462764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overproduction of rhamnolipid by fed-batch cultivation of Pseudomonas aeruginosa in a lab-scale fermenter under tight DO control.
    Bazsefidpar S; Mokhtarani B; Panahi R; Hajfarajollah H
    Biodegradation; 2019 Feb; 30(1):59-69. PubMed ID: 30600422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial production of rhamnolipids: opportunities, challenges and strategies.
    Chong H; Li Q
    Microb Cell Fact; 2017 Aug; 16(1):137. PubMed ID: 28779757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced rhamnolipids production by Pseudomonas aeruginosa based on a pH stage-controlled fed-batch fermentation process.
    Zhu L; Yang X; Xue C; Chen Y; Qu L; Lu W
    Bioresour Technol; 2012 Aug; 117():208-13. PubMed ID: 22613897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fermentative production of rhamnolipid and purification by adsorption chromatography.
    Jadhav J; Dutta S; Kale S; Pratap A
    Prep Biochem Biotechnol; 2018 Mar; 48(3):234-241. PubMed ID: 29313452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440.
    Wittgens A; Tiso T; Arndt TT; Wenk P; Hemmerich J; Müller C; Wichmann R; Küpper B; Zwick M; Wilhelm S; Hausmann R; Syldatk C; Rosenau F; Blank LM
    Microb Cell Fact; 2011 Oct; 10():80. PubMed ID: 21999513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced rhamnolipids production via efficient foam-control using stop valve as a foam breaker.
    Long X; Shen C; He N; Zhang G; Meng Q
    Bioresour Technol; 2017 Jan; 224():536-543. PubMed ID: 27839682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhamnolipid production by pseudomonas aeruginosa GIM 32 using different substrates including molasses distillery wastewater.
    Li AH; Xu MY; Sun W; Sun GP
    Appl Biochem Biotechnol; 2011 Mar; 163(5):600-11. PubMed ID: 20830582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhamnolipid production by Pseudomonas aeruginosa under denitrification: effects of limiting nutrients and carbon substrates.
    Chayabutra C; Wu J; Ju LK
    Biotechnol Bioeng; 2001 Jan; 72(1):25-33. PubMed ID: 11084590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of rhamnolipid congener synthesis in neotype Pseudomonas aeruginosa ATCC 10145 and two marine isolates.
    Du J; Zhang A; Zhang X; Si X; Cao J
    Bioresour Technol; 2019 Aug; 286():121380. PubMed ID: 31048264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production and Characterization of Rhamnolipids Produced by
    Maťátková O; Michailidu J; Ježdík R; Jarošová Kolouchová I; Řezanka T; Jirků V; Masák J
    Microorganisms; 2022 Jun; 10(7):. PubMed ID: 35888990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies for improved rhamnolipid production by Pseudomonas aeruginosa PA1.
    Soares Dos Santos A; Pereira N; Freire DM
    PeerJ; 2016; 4():e2078. PubMed ID: 27257553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.