BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35744795)

  • 41. Case Study 8: Status of the Structural Mass Action Kinetic Model of P-gp-Mediated Transport Through Confluent Cell Monolayers.
    Bentz J; Ellens H
    Methods Mol Biol; 2021; 2342():737-763. PubMed ID: 34272715
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transport and metabolism of MitoQ10, a mitochondria-targeted antioxidant, in Caco-2 cell monolayers.
    Li Y; Fawcett JP; Zhang H; Tucker IG
    J Pharm Pharmacol; 2007 Apr; 59(4):503-11. PubMed ID: 17430633
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Study on mechanism of low bioavailability of black tea theaflavins by using Caco-2 cell monolayer.
    Qu F; Ai Z; Liu S; Zhang H; Chen Y; Wang Y; Ni D
    Drug Deliv; 2021 Dec; 28(1):1737-1747. PubMed ID: 34463173
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regulation of breast cancer resistance protein and P-glycoprotein by ezrin, radixin and moesin in lung, intestinal and renal cancer cell lines.
    Yano K; Okabe C; Fujii K; Kato Y; Ogihara T
    J Pharm Pharmacol; 2020 Apr; 72(4):575-582. PubMed ID: 31975441
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modulation of Intestinal Transport and Absorption of Topotecan, a BCRP Substrate, by Various Pharmaceutical Excipients and Their Inhibitory Mechanisms of BCRP Transporter.
    Sawangrat K; Yamashita S; Tanaka A; Morishita M; Kusamori K; Katsumi H; Sakane T; Yamamoto A
    J Pharm Sci; 2019 Mar; 108(3):1315-1325. PubMed ID: 30389568
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Possible Regulation of P-Glycoprotein Function by Adrenergic Agonists II: Study with Isolated Rat Jejunal Sheets and Caco-2 Cell monolayers.
    Mukai H; Takanashi M; Ogawara KI; Maruyama M; Higaki K
    J Pharm Sci; 2024 May; 113(5):1209-1219. PubMed ID: 37984697
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transepithelial transport of rosuvastatin and effect of ursolic acid on its transport in Caco-2 monolayers.
    Hua WJ; Fang HJ; Hua WX
    Eur J Drug Metab Pharmacokinet; 2012 Sep; 37(3):225-31. PubMed ID: 22562361
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Studies on pharmacokinetic properties and absorption mechanism of phloretin: In vivo and in vitro.
    Zhao YY; Fan Y; Wang M; Wang J; Cheng JX; Zou JB; Zhang XF; Shi YJ; Guo DY
    Biomed Pharmacother; 2020 Dec; 132():110809. PubMed ID: 33049584
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A systematic evaluation of solubility enhancing excipients to enable the generation of permeability data for poorly soluble compounds in Caco-2 model.
    Shah D; Paruchury S; Matta M; Chowan G; Subramanian M; Saxena A; Soars MG; Herbst J; Haskell R; Marathe P; Mandlekar S
    Drug Metab Lett; 2014; 8(2):109-18. PubMed ID: 25429513
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanisms of transport and structure-permeability relationship of sulfasalazine and its analogs in Caco-2 cell monolayers.
    Liang E; Proudfoot J; Yazdanian M
    Pharm Res; 2000 Oct; 17(10):1168-74. PubMed ID: 11145220
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transport characteristics of fexofenadine in the Caco-2 cell model.
    Petri N; Tannergren C; Rungstad D; Lennernäs H
    Pharm Res; 2004 Aug; 21(8):1398-404. PubMed ID: 15359574
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Membrane transport of camptothecin: facilitation by human P-glycoprotein (ABCB1) and multidrug resistance protein 2 (ABCC2).
    Lalloo AK; Luo FR; Guo A; Paranjpe PV; Lee SH; Vyas V; Rubin E; Sinko PJ
    BMC Med; 2004 May; 2():16. PubMed ID: 15125776
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of P-glycoprotein-mediated secretion in absorptive drug permeability: An approach using passive membrane permeability and affinity to P-glycoprotein.
    Döppenschmitt S; Spahn-Langguth H; Regårdh CG; Langguth P
    J Pharm Sci; 1999 Oct; 88(10):1067-72. PubMed ID: 10514357
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The short-chain fatty acid butyrate is a substrate of breast cancer resistance protein.
    Gonçalves P; Gregório I; Martel F
    Am J Physiol Cell Physiol; 2011 Nov; 301(5):C984-94. PubMed ID: 21775706
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Gefitinib reverses breast cancer resistance protein-mediated drug resistance.
    Yanase K; Tsukahara S; Asada S; Ishikawa E; Imai Y; Sugimoto Y
    Mol Cancer Ther; 2004 Sep; 3(9):1119-25. PubMed ID: 15367706
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tyrosine kinase inhibitors and multidrug resistance proteins: interactions and biological consequences.
    Azzariti A; Porcelli L; Simone GM; Quatrale AE; Colabufo NA; Berardi F; Perrone R; Zucchetti M; D'Incalci M; Xu JM; Paradiso A
    Cancer Chemother Pharmacol; 2010 Jan; 65(2):335-46. PubMed ID: 19495754
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of hypoxia on the expression and function of P-gp in Caco-2 cells.
    Zhao A; Mu H; Yao W; Chang X; Li W; Wang R
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2023 Apr; 48(4):491-498. PubMed ID: 37385611
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Intestinal absorption mechanisms of prenylated flavonoids present in the heat-processed Epimedium koreanum Nakai (Yin Yanghuo).
    Chen Y; Zhao YH; Jia XB; Hu M
    Pharm Res; 2008 Sep; 25(9):2190-9. PubMed ID: 18459036
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reversal of breast cancer resistance protein-mediated drug resistance by estrogen antagonists and agonists.
    Sugimoto Y; Tsukahara S; Imai Y; Sugimoto Y; Ueda K; Tsuruo T
    Mol Cancer Ther; 2003 Jan; 2(1):105-12. PubMed ID: 12533678
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A nanotherapeutic strategy to overcome chemoresistance to irinotecan/7-ethyl-10-hydroxy-camptothecin in colorectal cancer.
    Huang Q; Liu X; Wang H; Liu X; Zhang Q; Li K; Chen Y; Zhu Q; Shen Y; Sui M
    Acta Biomater; 2022 Jan; 137():262-275. PubMed ID: 34718178
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.