These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 35744909)

  • 61. Xylanolytic Enzymes in Pulp and Paper Industry: New Technologies and Perspectives.
    Gupta GK; Dixit M; Kapoor RK; Shukla P
    Mol Biotechnol; 2022 Feb; 64(2):130-143. PubMed ID: 34580813
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Selection and characteristics of a switchgrass-colonizing microbial community to produce extracellular cellulases and xylanases.
    Yang H; Wu H; Wang X; Cui Z; Li Y
    Bioresour Technol; 2011 Feb; 102(3):3546-50. PubMed ID: 20933405
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Carbohydrate-binding modules influence substrate specificity of an endoglucanase from Clostridium thermocellum.
    Ichikawa S; Yoshida M; Karita S; Kondo M; Goto M
    Biosci Biotechnol Biochem; 2016; 80(1):188-92. PubMed ID: 26223555
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Production of cellulases and xylanases by low-temperature basidiomycetes.
    Inglis GD; Popp AP; Selinger LB; Kawchuk LM; Gaudet DA; McAllister TA
    Can J Microbiol; 2000 Sep; 46(9):860-5. PubMed ID: 11006848
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Synergistic hydrolysis of xylan using novel xylanases, β-xylosidases, and an α-L-arabinofuranosidase from Geobacillus thermodenitrificans NG80-2.
    Huang D; Liu J; Qi Y; Yang K; Xu Y; Feng L
    Appl Microbiol Biotechnol; 2017 Aug; 101(15):6023-6037. PubMed ID: 28616644
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Production of extracellular lignocellulose degrading enzymes by Thermomonospora fusca BD25.
    Tuncer M; Rob A; Ball AS; Wilson MT
    Biochem Soc Trans; 1996 Aug; 24(3):378S. PubMed ID: 8878922
    [No Abstract]   [Full Text] [Related]  

  • 67. A novel thermostable GH10 xylanase with activities on a wide variety of cellulosic substrates from a xylanolytic
    Wang K; Cao R; Wang M; Lin Q; Zhan R; Xu H; Wang S
    Biotechnol Biofuels; 2019; 12():48. PubMed ID: 30899328
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [Kinetics of xylanase and cellulase production by Ascobolus gamundii (Fungi, Ascomycotina)].
    Sivori AS; Mercuri OA; Forchiassin F
    Rev Argent Microbiol; 1996; 28(1):9-15. PubMed ID: 8815461
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Benefits from additives and xylanase during enzymatic hydrolysis of bamboo shoot and mature bamboo.
    Li K; Wang X; Wang J; Zhang J
    Bioresour Technol; 2015 Sep; 192():424-31. PubMed ID: 26070065
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Fungal xylanolytic enzymes: Diversity and applications.
    Li X; Dilokpimol A; Kabel MA; de Vries RP
    Bioresour Technol; 2022 Jan; 344(Pt B):126290. PubMed ID: 34748977
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The role of acetyl xylan esterase in the solubilization of xylan and enzymatic hydrolysis of wheat straw and giant reed.
    Zhang J; Siika-Aho M; Tenkanen M; Viikari L
    Biotechnol Biofuels; 2011 Dec; 4(1):60. PubMed ID: 22185437
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Controlled preparation of cellulases with xylanolytic enzymes from Trichoderma reesei (Hypocrea jecorina) by continuous-feed cultivation using soluble sugars.
    Ike M; Park JY; Tabuse M; Tokuyasu K
    Biosci Biotechnol Biochem; 2013; 77(1):161-6. PubMed ID: 23291768
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Quantitative proteomic study of Aspergillus Fumigatus secretome revealed deamidation of secretory enzymes.
    Adav SS; Ravindran A; Sze SK
    J Proteomics; 2015 Apr; 119():154-68. PubMed ID: 25724730
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Differential expression of cellulases and xylanases by Cellulomonas flavigena grown on different carbon sources.
    Sánchez-Herrera LM; Ramos-Valdivia AC; de la Torre M; Salgado LM; Ponce-Noyola T
    Appl Microbiol Biotechnol; 2007 Dec; 77(3):589-95. PubMed ID: 17899068
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Establishment of a simple Lactobacillus plantarum cell consortium for cellulase-xylanase synergistic interactions.
    Moraïs S; Shterzer N; Grinberg IR; Mathiesen G; Eijsink VG; Axelsson L; Lamed R; Bayer EA; Mizrahi I
    Appl Environ Microbiol; 2013 Sep; 79(17):5242-9. PubMed ID: 23811500
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Relationship of cellulosomal and noncellulosomal xylanases of Clostridium thermocellum to cellulose-degrading enzymes.
    Morag E; Bayer EA; Lamed R
    J Bacteriol; 1990 Oct; 172(10):6098-105. PubMed ID: 2211528
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Rice straw-decomposing fungi and their cellulolytic and xylanolytic enzymes.
    Lee S; Jang Y; Lee YM; Lee J; Lee H; Kim GH; Kim JJ
    J Microbiol Biotechnol; 2011 Dec; 21(12):1322-9. PubMed ID: 22210620
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Contribution of a family 1 carbohydrate-binding module in thermostable glycoside hydrolase 10 xylanase from Talaromyces cellulolyticus toward synergistic enzymatic hydrolysis of lignocellulose.
    Inoue H; Kishishita S; Kumagai A; Kataoka M; Fujii T; Ishikawa K
    Biotechnol Biofuels; 2015; 8():77. PubMed ID: 26000036
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Xylanase production by Aspergillus awamori in solid-state fermentation and influence of different nitrogen sources.
    Lemos JL; Fontes MC; Pereira N
    Appl Biochem Biotechnol; 2001; 91-93():681-9. PubMed ID: 11963896
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Characterization of novel lignocellulose-degrading enzymes from the porcupine microbiome using synthetic metagenomics.
    Thornbury M; Sicheri J; Slaine P; Getz LJ; Finlayson-Trick E; Cook J; Guinard C; Boudreau N; Jakeman D; Rohde J; McCormick C
    PLoS One; 2019; 14(1):e0209221. PubMed ID: 30601862
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.