These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 35745038)
1. Rational Design of Peptides Derived from Odorant-Binding Proteins for SARS-CoV-2-Related Volatile Organic Compounds Recognition. Wang J; Sakai K; Kiwa T Molecules; 2022 Jun; 27(12):. PubMed ID: 35745038 [TBL] [Abstract][Full Text] [Related]
2. Data-driven design of a multiplexed, peptide-sensitized transistor to detect breath VOC markers of COVID-19. Nakano-Baker O; Fong H; Shukla S; Lee RV; Cai L; Godin D; Hennig T; Rath S; Novosselov I; Dogan S; Sarikaya M; MacKenzie JD Biosens Bioelectron; 2023 Jun; 229():115237. PubMed ID: 36965380 [TBL] [Abstract][Full Text] [Related]
3. COVID-19 screening using breath-borne volatile organic compounds. Chen H; Qi X; Zhang L; Li X; Ma J; Zhang C; Feng H; Yao M J Breath Res; 2021 Oct; 15(4):. PubMed ID: 34624875 [TBL] [Abstract][Full Text] [Related]
4. A hypothesis on the capacity of plant odorant-binding proteins to bind volatile isoprenoids based on in silico evidences. Giordano D; Facchiano A; D'Auria S; Loreto F Elife; 2021 Jun; 10():. PubMed ID: 34161230 [TBL] [Abstract][Full Text] [Related]
6. Assessment of an e-nose performance for the detection of COVID-19 specific biomarkers. Ghazaly C; Biletska K; Thevenot EA; Devillier P; Naline E; Grassin-Delyle S; Scorsone E J Breath Res; 2023 Feb; 17(2):. PubMed ID: 36749983 [TBL] [Abstract][Full Text] [Related]
7. Exhaled VOCs can discriminate subjects with COVID-19 from healthy controls. Woollam M; Angarita-Rivera P; Siegel AP; Kalra V; Kapoor R; Agarwal M J Breath Res; 2022 May; 16(3):. PubMed ID: 35453137 [TBL] [Abstract][Full Text] [Related]
8. Identification of odorant binding proteins in Carpomya vesuviana and their binding affinity to the male-borne semiochemicals and host plant volatiles. Li Y; Zhou P; Zhang J; Yang D; Li Z; Zhang X; Zhu S; Yu Y; Chen N J Insect Physiol; 2017 Jul; 100():100-107. PubMed ID: 28571710 [TBL] [Abstract][Full Text] [Related]
9. Stability of volatile organic compounds in sorbent tubes following SARS-CoV-2 inactivation procedures. Lomonaco T; Salvo P; Ghimenti S; Biagini D; Vivaldi F; Bonini A; Fuoco R; Di Francesco F J Breath Res; 2021 Apr; 15(3):. PubMed ID: 33752195 [TBL] [Abstract][Full Text] [Related]
10. Interaction of the III-As monolayer with SARS-CoV-2 biomarkers: implications for biosensor development. Saha S; Sajib DI; Alam MK Phys Chem Chem Phys; 2024 Feb; 26(7):6242-6255. PubMed ID: 38305347 [TBL] [Abstract][Full Text] [Related]
12. Virtual Screening of Plant Volatile Compounds Reveals a High Affinity of Hylamorpha elegans (Coleoptera: Scarabaeidae) Odorant-Binding Proteins for Sesquiterpenes From Its Native Host. González-González A; Palma-Millanao R; Yáñez O; Rojas M; Mutis A; Venthur H; Quiroz A; Ramírez CC J Insect Sci; 2016; 16(1):. PubMed ID: 27012867 [TBL] [Abstract][Full Text] [Related]
13. Highly effective volatile organic compound dissolving strategy based on mist atomization for odorant biosensors. Terutsuki D; Mitsuno H; Sato K; Sakurai T; Mase N; Kanzaki R Anal Chim Acta; 2020 Dec; 1139():178-188. PubMed ID: 33190702 [TBL] [Abstract][Full Text] [Related]
14. Detection of volatile organic compounds in exhaled breath for mass screening of COVID-19 infection. Lai CKC; Choi KW; Yao J; Tong RCF Hong Kong Med J; 2023 Apr; 29(2):175-177. PubMed ID: 36530162 [No Abstract] [Full Text] [Related]
15. Colorimetric chromophoric rapid detection of SARS-CoV-2 through breath analysis. Sheikh HK; Arshad T; Habib U; Mohammad ZS; Ahmed Siddiqui MU; Hassan M Pak J Pharm Sci; 2022 Jan; 35(1):157-160. PubMed ID: 35221285 [TBL] [Abstract][Full Text] [Related]
16. Detection of volatile organic compounds (VOCs) from exhaled breath as noninvasive methods for cancer diagnosis. Sun X; Shao K; Wang T Anal Bioanal Chem; 2016 Apr; 408(11):2759-80. PubMed ID: 26677028 [TBL] [Abstract][Full Text] [Related]
17. Volatile organic compounds (VOCs) fingerprint of Alzheimer's disease. Mazzatenta A; Pokorski M; Sartucci F; Domenici L; Di Giulio C Respir Physiol Neurobiol; 2015 Apr; 209():81-4. PubMed ID: 25308706 [TBL] [Abstract][Full Text] [Related]
18. Physiological variability in volatile organic compounds (VOCs) in exhaled breath and released from faeces due to nutrition and somatic growth in a standardized caprine animal model. Fischer S; Trefz P; Bergmann A; Steffens M; Ziller M; Miekisch W; Schubert JS; Köhler H; Reinhold P J Breath Res; 2015 May; 9(2):027108. PubMed ID: 25971714 [TBL] [Abstract][Full Text] [Related]
19. Reproducible breath metabolite changes in children with SARS-CoV-2 infection. Berna AZ; Akaho EH; Harris RM; Congdon M; Korn E; Neher S; M'Farrej M; Burns J; John ARO medRxiv; 2021 May; ():. PubMed ID: 33330891 [TBL] [Abstract][Full Text] [Related]
20. Relationship between cancer tissue derived and exhaled volatile organic compound from colorectal cancer patients. Preliminary results. De Vietro N; Aresta A; Rotelli MT; Zambonin C; Lippolis C; Picciariello A; Altomare DF J Pharm Biomed Anal; 2020 Feb; 180():113055. PubMed ID: 31877489 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]