BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 35745039)

  • 1. Feasibility of Defatted Juice from Sea-Buckthorn Berries (
    Belcar J; Gorzelany J
    Molecules; 2022 Jun; 27(12):. PubMed ID: 35745039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nutritional assessment of processing effects on major and trace element content in sea buckthorn juice (Hippophaë rhamnoides L. ssp. rhamnoides).
    Gutzeit D; Winterhalter P; Jerz G
    J Food Sci; 2008 Aug; 73(6):H97-102. PubMed ID: 19241584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Flavonols and Proanthocyanidins in the Sensory Quality of Sea Buckthorn (Hippophaë rhamnoides L.) Berries.
    Ma X; Yang W; Laaksonen O; Nylander M; Kallio H; Yang B
    J Agric Food Chem; 2017 Nov; 65(45):9871-9879. PubMed ID: 29035528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological properties of sea buckthorn (Hippophae rhamnoides L.) derived products.
    Ivanišová E; Blašková M; Terentjeva M; Grygorieva O; Vergun O; Brindza J; Kačániová M
    Acta Sci Pol Technol Aliment; 2020; 19(2):195-205. PubMed ID: 32600016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the Addition of Lemongrass (
    Belcar J; Gorzelany J
    Molecules; 2022 Dec; 27(24):. PubMed ID: 36558173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vitamin C content in sea buckthorn berries (Hippophaë rhamnoides L. ssp. rhamnoides) and related products: a kinetic study on storage stability and the determination of processing effects.
    Gutzeit D; Baleanu G; Winterhalter P; Jerz G
    J Food Sci; 2008 Nov; 73(9):C615-20. PubMed ID: 19021790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of Drying Methods on Phenolic Components and Antioxidant Activity of Sea Buckthorn (
    Li Y; Li P; Yang K; He Q; Wang Y; Sun Y; He C; Xiao P
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of phenolic compounds and vitamins C and E on antioxidant activity of sea buckthorn (Hippophaë rhamnoides L.) berries and leaves of diverse ripening times.
    Sytařová I; Orsavová J; Snopek L; Mlček J; Byczyński Ł; Mišurcová L
    Food Chem; 2020 Apr; 310():125784. PubMed ID: 31816534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Lipophilic and Hydrophilic Bioactive Compounds Content in Sea Buckthorn (Hippophaë rhamnoides L.) Berries.
    Teleszko M; Wojdyło A; Rudzińska M; Oszmiański J; Golis T
    J Agric Food Chem; 2015 Apr; 63(16):4120-9. PubMed ID: 25893239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolite profiling and expression analysis of flavonoid, vitamin C and tocopherol biosynthesis genes in the antioxidant-rich sea buckthorn (Hippophae rhamnoides L.).
    Fatima T; Kesari V; Watt I; Wishart D; Todd JF; Schroeder WR; Paliyath G; Krishna P
    Phytochemistry; 2015 Oct; 118():181-91. PubMed ID: 26318327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential Application of
    Ghendov-Mosanu A; Cristea E; Patras A; Sturza R; Padureanu S; Deseatnicova O; Turculet N; Boestean O; Niculaua M
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32168868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of the Addition of Fruits of Kamchatka Berries (
    Belcar J; Kapusta I; Sekutowski TR; Gorzelany J
    Molecules; 2023 May; 28(10):. PubMed ID: 37241752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative assessment of phytochemical profiles, antioxidant and antiproliferative activities of Sea buckthorn (Hippophaë rhamnoides L.) berries.
    Guo R; Guo X; Li T; Fu X; Liu RH
    Food Chem; 2017 Apr; 221():997-1003. PubMed ID: 27979305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Explicating genetic diversity based on ITS characterization and determination of antioxidant potential in sea buckthorn (Hippophae spp.).
    Haq SAU; Mir MA; Lone SM; Banoo A; Shafi F; Mir SA; Bhat JIA; Rashid R; Wani SH; Masoodi TH; Khan MN; Nehvi FA; Masoodi KZ
    Mol Biol Rep; 2022 Jun; 49(6):5229-5240. PubMed ID: 34387804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-tube extraction and GC-MS analysis of volatile components from wild and cultivated sea buckthorn (Hippophae rhamnoides L. ssp. Carpatica) berry varieties and juice.
    Socaci SA; Socaciu C; Tofană M; Raţi IV; Pintea A
    Phytochem Anal; 2013; 24(4):319-28. PubMed ID: 23319448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secoisolariciresinol and matairesinol of sea buckthorn (Hippophaë rhamnoides L.) berries of different subspecies and harvesting times.
    Yang B; Linko AM; Adlercreutz H; Kallio H
    J Agric Food Chem; 2006 Oct; 54(21):8065-70. PubMed ID: 17032010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flavonol glycosides in berries of two major subspecies of sea buckthorn (Hippophaë rhamnoides L.) and influence of growth sites.
    Ma X; Laaksonen O; Zheng J; Yang W; Trépanier M; Kallio H; Yang B
    Food Chem; 2016 Jun; 200():189-98. PubMed ID: 26830578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of different origins and harvesting time on vitamin C, tocopherols, and tocotrienols in sea buckthorn (Hippophaë rhamnoides) berries.
    Kallio H; Yang B; Peippo P
    J Agric Food Chem; 2002 Oct; 50(21):6136-42. PubMed ID: 12358492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of processing effects and of storage stability on vitamin K1 (Phylloquinone) in Sea Buckthorn Berries (Hippophaë rhamnoides L. ssp. rhamnoides) and related products.
    Gutzeit D; Baleanu G; Winterhalter P; Jerz G
    J Food Sci; 2007 Nov; 72(9):C491-7. PubMed ID: 18034709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-antioxidant efficiency relationships of phenolic compounds and their contribution to the antioxidant activity of sea buckthorn juice.
    Rösch D; Bergmann M; Knorr D; Kroh LW
    J Agric Food Chem; 2003 Jul; 51(15):4233-9. PubMed ID: 12848490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.