These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35745299)

  • 41. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils.
    Vispute TP; Zhang H; Sanna A; Xiao R; Huber GW
    Science; 2010 Nov; 330(6008):1222-7. PubMed ID: 21109668
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Boosting levoglucosan and furfural production from corn stalks pyrolysis via electro-assisted seawater pretreatment.
    Yu H; Zhang F; Li L; Wang H; Sun Y; Jiang E; Xu X
    Bioresour Technol; 2022 Feb; 346():126478. PubMed ID: 34910973
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Red-mud based porous nanocatalysts for valorisation of municipal solid waste.
    Ahmed MHM; Batalha N; Qiu T; Hasan MM; Atanda L; Amiralian N; Wang L; Peng H; Konarova M
    J Hazard Mater; 2020 Sep; 396():122711. PubMed ID: 32335378
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Conversion of waste plastics into low emissive hydrocarbon fuel using catalyst produced from biowaste.
    Jahnavi N; Kanmani K; Kumar PS; Varjani S
    Environ Sci Pollut Res Int; 2021 Dec; 28(45):63638-63645. PubMed ID: 33113066
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Performance of bitumen coating sheet using biomass pyrolysis oil.
    Ren Y; Zhang L; Duan W; Han Z; Guo J; Heydenrych MD; Zhang A; Nie K; Tan T; Liu L
    J Air Waste Manag Assoc; 2020 Feb; 70(2):219-227. PubMed ID: 31971493
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pyrolysis of marine biomass to produce bio-oil and its upgrading using a novel multi-metal catalyst prepared from the spent car catalytic converter.
    Sabegh MY; Norouzi O; Jafarian S; Khosh AG; Tavasoli A
    Bioresour Technol; 2018 Feb; 249():473-478. PubMed ID: 29069635
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Catalytic Reduction of p-Nitrophenol on MnO
    Da'na E; Taha A; El-Aassar MR
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839153
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A review on advanced catalytic co-pyrolysis of biomass and hydrogen-rich feedstock: Insights into synergistic effect, catalyst development and reaction mechanism.
    Ahmed MHM; Batalha N; Mahmudul HMD; Perkins G; Konarova M
    Bioresour Technol; 2020 Aug; 310():123457. PubMed ID: 32371033
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Utilisation of poultry industry wastes for liquid biofuel production via thermal and catalytic fast pyrolysis.
    Kantarli IC; Stefanidis SD; Kalogiannis KG; Lappas AA
    Waste Manag Res; 2019 Feb; 37(2):157-167. PubMed ID: 30249165
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improving the hydrocarbon production via co-pyrolysis of bagasse with bio-plastic and dual-catalysts layout.
    Zhang H; Likun PKW; Xiao R
    Sci Total Environ; 2018 Mar; 618():151-156. PubMed ID: 29128763
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Catalytic upgrading of pyrolysis vapor from rape straw in a vacuum pyrolysis system over La/HZSM-5 with hierarchical structure.
    Li X; Zhang X; Shao S; Dong L; Zhang J; Hu C; Cai Y
    Bioresour Technol; 2018 Jul; 259():191-197. PubMed ID: 29554599
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Selective Production of Phenol-Rich Bio-Oil From Corn Straw Waste by Direct Microwave Pyrolysis Without Extra Catalyst.
    Zhao Z; Jiang Z; Xu H; Yan K
    Front Chem; 2021; 9():700887. PubMed ID: 34277570
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microwave-assisted pyrolysis of formic acid pretreated bamboo sawdust for bio-oil production.
    Dai L; Wang Y; Liu Y; Ruan R
    Environ Res; 2020 Mar; 182():108988. PubMed ID: 31821986
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Consequence of replacing nitrogen with carbon dioxide as atmosphere on suppressing the formation of polycyclic aromatic hydrocarbons in catalytic pyrolysis of sawdust.
    He Y; Chen S; Chen J; Liu D; Ning X; Liu J; Wang T
    Bioresour Technol; 2020 Feb; 297():122417. PubMed ID: 31759856
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Incorporation of Nanocatalysts for the Production of Bio-Oil from
    Li Y; Li G; Yang Y; Chen X; Peng W; Li H
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297963
    [TBL] [Abstract][Full Text] [Related]  

  • 56. GC-MS determination of polycyclic aromatic hydrocarbons evolved from pyrolysis of biomass.
    Fabbri D; Adamiano A; Torri C
    Anal Bioanal Chem; 2010 May; 397(1):309-317. PubMed ID: 20213167
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Co-pyrolysis of biomass and plastic waste over zeolite- and sodium-based catalysts for enhanced yields of hydrocarbon products.
    Ghorbannezhad P; Park S; Onwudili JA
    Waste Manag; 2020 Feb; 102():909-918. PubMed ID: 31841983
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Catalytic fast pyrolysis of maize straw with a core-shell ZSM-5@SBA-15 catalyst for producing phenols and hydrocarbons.
    Xue X; Liu Y; Wu L; Pan X; Liang J; Sun Y
    Bioresour Technol; 2019 Oct; 289():121691. PubMed ID: 31252318
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons.
    Ryu HW; Kim DH; Jae J; Lam SS; Park ED; Park YK
    Bioresour Technol; 2020 Aug; 310():123473. PubMed ID: 32389430
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Stability improvement of algal-alginate beads by zeolite molecular sieves 13X.
    Emami Moghaddam SA; Harun R; Mokhtar MN; Zakaria R
    Int J Biol Macromol; 2019 Jul; 132():592-599. PubMed ID: 30922914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.