These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35745305)

  • 1. First-Principles Study of n*AlN/n*ScN Superlattices with High Dielectric Capacity for Energy Storage.
    Zhang WC; Wu H; Sun WF; Zhang ZP
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical study of nitride short period superlattices.
    Gorczyca I; Suski T; Christensen NE; Svane A
    J Phys Condens Matter; 2018 Feb; 30(6):063001. PubMed ID: 29256446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoelectric properties of HfN/ScN metal/semiconductor superlattices: a first-principles study.
    Saha B; Sands TD; Waghmare UV
    J Phys Condens Matter; 2012 Oct; 24(41):415303. PubMed ID: 23014147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A High-Throughput Study of the Electronic Structure and Physical Properties of Short-Period (GaAs)
    Liu QL; Zhao ZY; Yi JH; Zhang ZY
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30201917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature dependence of dielectric permittivity of perovskite-type artificial superlattices.
    Kinbara H; Harigai T; Kakemoto H; Wada S; Tsurumi T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2541-7. PubMed ID: 18276552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of stacking periodicity on the electronic and optical properties of GaAs/AlAs superlattice: a first-principles study.
    Jiang M; Xiao HY; Peng SM; Qiao L; Yang GX; Liu ZJ; Zu XT
    Sci Rep; 2020 Mar; 10(1):4862. PubMed ID: 32184414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculation of Energy Diagram of Asymmetric Graded-Band-Gap Semiconductor Superlattices.
    Monastyrskii LS; Sokolovskii BS; Alekseichyk MP
    Nanoscale Res Lett; 2017 Dec; 12(1):203. PubMed ID: 28325035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ferroelectric/paraelectric superlattices for energy storage.
    Aramberri H; Fedorova NS; Íñiguez J
    Sci Adv; 2022 Aug; 8(31):eabn4880. PubMed ID: 35921413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-Principles Study of Point Defects in GaAs/AlAs Superlattice: the Phase Stability and the Effects on the Band Structure and Carrier Mobility.
    Jiang M; Xiao H; Peng S; Qiao L; Yang G; Liu Z; Zu X
    Nanoscale Res Lett; 2018 Sep; 13(1):301. PubMed ID: 30259329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectric Properties and Switching Processes of Barium Titanate⁻Barium Zirconate Ferroelectric Superlattices.
    Sidorkin A; Nesterenko L; Gagou Y; Saint-Gregoire P; Vorotnikov E; Popravko N
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30110967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Band gap engineering of In(Ga)N/GaN short period superlattices.
    Gorczyca I; Suski T; Strak P; Staszczak G; Christensen NE
    Sci Rep; 2017 Nov; 7(1):16055. PubMed ID: 29167513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Giant energy storage and power density negative capacitance superlattices.
    Cheema SS; Shanker N; Hsu SL; Schaadt J; Ellis NM; Cook M; Rastogi R; Pilawa-Podgurski RCN; Ciston J; Mohamed M; Salahuddin S
    Nature; 2024 May; 629(8013):803-809. PubMed ID: 38593860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-principles analysis for the modulation of energy band gap and optical characteristics in HgTe/CdTe superlattices.
    Laref A; Alsagri M; Alahmed ZA; Laref S
    RSC Adv; 2019 May; 9(29):16390-16405. PubMed ID: 35516368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Energy-Storage Density and High Efficiency of Lead-Free CaTiO
    Luo B; Wang X; Tian E; Song H; Wang H; Li L
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19963-19972. PubMed ID: 28537373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing Multifunctionality via Assembling Dissimilar Materials: Epitaxial AlN/ScN Superlattices.
    Jiang Z; Paillard C; Vanderbilt D; Xiang H; Bellaiche L
    Phys Rev Lett; 2019 Aug; 123(9):096801. PubMed ID: 31524461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Band structure engineering of 2D materials using patterned dielectric superlattices.
    Forsythe C; Zhou X; Watanabe K; Taniguchi T; Pasupathy A; Moon P; Koshino M; Kim P; Dean CR
    Nat Nanotechnol; 2018 Jul; 13(7):566-571. PubMed ID: 29736033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local symmetry-driven interfacial magnetization and electronic states in (ZnO)
    Gao JX; Ng YS; Cheng H; Wang HQ; Lü TY; Zheng JC
    Phys Chem Chem Phys; 2024 Apr; 26(15):12084-12096. PubMed ID: 38586994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarization and Dielectric Properties of BiFeO
    Noguchi Y; Matsuo H
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical tuning of dielectric properties of La
    Cai H; Huang H; Huang Q; Hu X; Zhang J; Zhai X; Lu Y
    Opt Express; 2018 Mar; 26(6):7842-7851. PubMed ID: 29609332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A density functional study on dielectric properties of acrylic acid grafted polypropylene.
    Ruuska H; Arola E; Kortelainen T; Rantala TT; Kannus K; Valkealahti S
    J Chem Phys; 2011 Apr; 134(13):134904. PubMed ID: 21476771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.