BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 35745357)

  • 1. γ-Valerolactone Production from Levulinic Acid Hydrogenation Using Ni Supported Nanoparticles: Influence of Tungsten Loading and pH of Synthesis.
    Córdova-Pérez GE; Cortez-Elizalde J; Silahua-Pavón AA; Cervantes-Uribe A; Arévalo-Pérez JC; Cordero-Garcia A; de Los Monteros AEE; Espinosa-González CG; Godavarthi S; Ortiz-Chi F; Guerra-Que Z; Torres-Torres JG
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vapor-Phase Hydrogenation of Levulinic Acid to γ-Valerolactone Over Bi-Functional Ni/HZSM-5 Catalyst.
    Popova M; Djinović P; Ristić A; Lazarova H; Dražić G; Pintar A; Balu AM; Novak Tušar N
    Front Chem; 2018; 6():285. PubMed ID: 30065923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodeoxygenation of Levulinic Acid to γ-Valerolactone over Mesoporous Silica-Supported Cu-Ni Composite Catalysts.
    Popova M; Trendafilova I; Oykova M; Mitrev Y; Shestakova P; Mihályi MR; Szegedi Á
    Molecules; 2022 Aug; 27(17):. PubMed ID: 36080151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ni-Cu and Ni-Co-Modified Fly Ash Zeolite Catalysts for Hydrodeoxygenation of Levulinic Acid to γ-Valerolactone.
    Popova M; Dimitrov M; Boycheva S; Dimitrov I; Ublekov F; Koseva N; Atanasova G; Karashanova D; Szegedi Á
    Molecules; 2023 Dec; 29(1):. PubMed ID: 38202681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of levulinic acid to γ-valerolactone over Ru/Al
    Wang R; Chen L; Zhang X; Zhang Q; Li Y; Wang C; Ma L
    RSC Adv; 2018 Dec; 8(71):40989-40995. PubMed ID: 35557899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2,5-Dimethylfuran Production by Catalytic Hydrogenation of 5-Hydroxymethylfurfural Using Ni Supported on Al
    Cortez-Elizalde J; Córdova-Pérez GE; Silahua-Pavón AA; Pérez-Vidal H; Cervantes-Uribe A; Cordero-García A; Arévalo-Pérez JC; Becerril-Altamirano NL; Castillo-Gallegos NC; Lunagómez-Rocha MA; Díaz de León JN; Guerra-Que Z; Espinosa de Los Monteros AE; Torres-Torres JG
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient selective hydrogenation of levulinic acid to γ-valerolactone over Cu-Re/TiO
    Liu Y; Liu K; Zhang M; Zhang K; Ma J; Xiao S; Wei Z; Deng S
    RSC Adv; 2021 Dec; 12(1):602-610. PubMed ID: 35424528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic hydrogenation of levulinic acid to γ-valerolactone over lignin-metal coordinated carbon nanospheres in water.
    Xu Y; Liang Y; Guo H; Qi X
    Int J Biol Macromol; 2023 Jun; 240():124451. PubMed ID: 37062379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust Ruthenium Catalysts Supported on Mesoporous Cyclodextrin-Templated TiO
    Decarpigny C; Noël S; Addad A; Ponchel A; Monflier E; Bleta R
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33572104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ru nanoparticles anchored on porous N-doped carbon nanospheres for efficient catalytic hydrogenation of Levulinic acid to γ-valerolactone under solvent-free conditions.
    Li B; Zhao H; Fang J; Li J; Gao W; Ma K; Liu C; Yang H; Ren X; Dong Z
    J Colloid Interface Sci; 2022 Oct; 623():905-914. PubMed ID: 35636298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of the Hydrogen Source on the Selective Production of γ-Valerolactone and 2-Methyltetrahydrofuran from Levulinic Acid.
    Obregón I; Gandarias I; Al-Shaal MG; Mevissen C; Arias PL; Palkovits R
    ChemSusChem; 2016 Sep; 9(17):2488-95. PubMed ID: 27483194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructured Nickel/Silica Catalysts for Continuous Flow Conversion of Levulinic Acid to γ-Valerolactone.
    Mallesham B; Sudarsanam P; Venkata Shiva Reddy B; Govinda Rao B; Reddy BM
    ACS Omega; 2018 Dec; 3(12):16839-16849. PubMed ID: 31458310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ru@hyperbranched Polymer for Hydrogenation of Levulinic Acid to Gamma-Valerolactone: The Role of the Catalyst Support.
    Sorokina SA; Mikhailov SP; Kuchkina NV; Bykov AV; Vasiliev AL; Ezernitskaya MG; Golovin AL; Nikoshvili LZ; Sulman MG; Shifrina ZB
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into selective hydrogenation of levulinic acid using copper on manganese oxide octahedral molecular sieves.
    Mazumdar NJ; Deshmukh G; Rovea A; Kumar P; Arredondo-Arechavala M; Manyar H
    R Soc Open Sci; 2022 Jul; 9(7):220078. PubMed ID: 35911198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vapour-Phase Selective Hydrogenation of γ-Valerolactone to 2-Methyltetrahydrofuran Biofuel over Silica-Supported Copper Catalysts.
    Pothu R; Challa P; Rajesh R; Boddula R; Balaga R; Balla P; Perugopu V; Radwan AB; Abdullah AM; Al-Qahtani N
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen-doped graphene supported Ni as an efficient and stable catalyst for levulinic acid hydrogenation.
    Ding Q; Wang Y; Ma L
    Nanotechnology; 2022 Jun; 33(35):. PubMed ID: 33887710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodesulfurization of Dibenzothiophene over Ni-Mo-W Sulfide Catalysts Supported on Sol-Gel Al
    Navarro Yerga RM; Pawelec B; Mota N; Huirache-Acuña R
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water-born zirconium-based metal organic frameworks as green and effective catalysts for catalytic transfer hydrogenation of levulinic acid to γ-valerolactone: Critical roles of modulators.
    Yun WC; Yang MT; Lin KA
    J Colloid Interface Sci; 2019 May; 543():52-63. PubMed ID: 30779993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tungsten Promoted Ni/Al
    Duan Y; Wang R; Liu Q; Qin X; Li Z
    Front Chem; 2022; 10():857199. PubMed ID: 35355788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noble Metal-Free Hierarchical ZrY Zeolite Efficient for Hydrogenation of Biomass-Derived Levulinic Acid.
    Hu D; Xu H; Wu Z; Zhang M; Zhao Z; Wang Y; Yan K
    Front Chem; 2021; 9():725175. PubMed ID: 34712649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.