These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 35745434)

  • 1. Application of the Higher-Order Hamilton Approach to the Nonlinear Free Vibrations Analysis of Porous FG Nano-Beams in a Hygrothermal Environment Based on a Local/Nonlocal Stress Gradient Model of Elasticity.
    Penna R; Feo L; Lovisi G; Fabbrocino F
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hygro-Thermal Vibrations of Porous FG Nano-Beams Based on Local/Nonlocal Stress Gradient Theory of Elasticity.
    Penna R; Feo L; Lovisi G; Fabbrocino F
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33918408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Response of Multilayered Polymer Functionally Graded Carbon Nanotube Reinforced Composite (FG-CNTRC) Nano-Beams in Hygro-Thermal Environment.
    Penna R; Lovisi G; Feo L
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Surface Stress-Driven Model for Higher Vibration Modes of Functionally Graded Nanobeams.
    Lovisi G; Feo L; Lambiase A; Penna R
    Nanomaterials (Basel); 2024 Feb; 14(4):. PubMed ID: 38392723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Nonlinear Vibration of Functionally Graded Simply Supported Fluid-Conveying Microtubes Subjected to Transverse Excitation Loads.
    Ma T; Mu A
    Micromachines (Basel); 2022 Nov; 13(12):. PubMed ID: 36557413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermo-Electro-Mechanical Vibrations of Porous Functionally Graded Piezoelectric Nanoshells.
    Liu YF; Wang YQ
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30791652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlocal Buckling Analysis of Composite Curved Beams Reinforced with Functionally Graded Carbon Nanotubes.
    Karami B; Janghorban M; Shahsavari D; Dimitri R; Tornabene F
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31362407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Nonlinear Nonlocal Thermoelasticity Euler-Bernoulli Beam Theory and Its Application to Single-Walled Carbon Nanotubes.
    Huang K; Xu W
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear vibrations of pre- and post-buckled lipid supramolecular micro/nano-tubules via nonlocal strain gradient elasticity theory.
    Sahmani S; Aghdam MM
    J Biomech; 2017 Dec; 65():49-60. PubMed ID: 29050823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical Temperatures for Vibrations and Buckling of Magneto-Electro-Elastic Nonlocal Strain Gradient Plates.
    Tocci Monaco G; Fantuzzi N; Fabbrocino F; Luciano R
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33401556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlocal Strain Gradient Theory for the Bending of Functionally Graded Porous Nanoplates.
    Alghanmi RA
    Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear vibrations of axially moving simply supported viscoelastic nanobeams based on nonlocal strain gradient theory.
    Wang J; Shen H
    J Phys Condens Matter; 2019 Dec; 31(48):485403. PubMed ID: 31422947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A New Mathematical Model of Functionally Graded Porous Euler-Bernoulli Nanoscaled Beams Taking into Account Some Types of Nonlinearities.
    Krysko AV; Papkova IV; Rezchikov AF; Krysko VA
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free Vibrations of Bernoulli-Euler Nanobeams with Point Mass Interacting with Heavy Fluid Using Nonlocal Elasticity.
    Barretta R; Čanađija M; Marotti de Sciarra F; Skoblar A
    Nanomaterials (Basel); 2022 Aug; 12(15):. PubMed ID: 35957106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexoelectric and size-dependent effects on hygro-thermal vibration of variable thickness fluid-infiltrated porous metal foam nanoplates.
    Thi TN; Tran VK; Pham QH
    Heliyon; 2024 Feb; 10(4):e26150. PubMed ID: 38404837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effect of Porosity on Elastic Stability of Toroidal Shell Segments Made of Saturated Porous Functionally Graded Materials.
    Babaei H; Jabbari M; Eslami MR
    J Press Vessel Technol; 2021 Jun; 143(3):031501. PubMed ID: 33442072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electromechanical Analysis of Flexoelectric Nanosensors Based on Nonlocal Elasticity Theory.
    Su Y; Zhou Z
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33291573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-dependent thermo-mechanical vibration of lipid supramolecular nano-tubules via nonlocal strain gradient Timoshenko beam theory.
    Alizadeh-Hamidi B; Hassannejad R; Omidi Y
    Comput Biol Med; 2021 Jul; 134():104475. PubMed ID: 34022484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlocal Analysis of the Flexural-Torsional Stability for FG Tapered Thin-Walled Beam-Columns.
    Soltani M; Atoufi F; Mohri F; Dimitri R; Tornabene F
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibration Analysis of Porous Cu-Si Microcantilever Beams in Fluids Based on Modified Couple Stress Theory.
    Jiang J; Tang F; He S; Dong F; Liu S
    Nanomaterials (Basel); 2024 Jul; 14(13):. PubMed ID: 38998749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.