BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 35745441)

  • 1. Application of Quantum Dot Interface Modification Layer in Perovskite Solar Cells: Progress and Perspectives.
    Zhou Y; Luo X; Yang J; Qiu Q; Xie T; Liang T
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of quantum dots in perovskite solar cells.
    Zheng F; Liu Y; Ren W; Sunli Z; Xie X; Cui Y; Hao Y
    Nanotechnology; 2021 Sep; 32(48):. PubMed ID: 33647887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selection, Preparation and Application of Quantum Dots in Perovskite Solar Cells.
    Zhou Y; Yang J; Luo X; Li Y; Qiu Q; Xie T
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MoS
    Najafi L; Taheri B; Martín-García B; Bellani S; Di Girolamo D; Agresti A; Oropesa-Nuñez R; Pescetelli S; Vesce L; Calabrò E; Prato M; Del Rio Castillo AE; Di Carlo A; Bonaccorso F
    ACS Nano; 2018 Nov; 12(11):10736-10754. PubMed ID: 30240189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High efficiency and stability of perovskite solar cells prepared by alkali metal interfacial modification.
    Zhang W; Song Y; Zhang H; La A; Lu Y
    Opt Express; 2024 May; 32(10):17132-17142. PubMed ID: 38858903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved efficiency and carrier dynamic transportation behavior in perovskite solar cells with CuInS
    Li H; Luo D; Liu L; Xiong D; Peng Y
    Dalton Trans; 2021 Jun; 50(25):8837-8844. PubMed ID: 34100052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement and Broadening of the Internal Electric Field of Hole-Transport-Layer-Free Perovskite Solar Cells by Quantum Dot Interface Modification.
    Zhang W; Zheng B; Sun H; Lv P; Liu X
    ACS Appl Mater Interfaces; 2024 Feb; 16(5):6665-6673. PubMed ID: 38288745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dipolar Chemical Bridge Induced CsPbI
    Qiu J; Mei X; Zhang M; Wang G; Zou S; Wen L; Huang J; Hua Y; Zhang X
    Angew Chem Int Ed Engl; 2024 Apr; 63(18):e202401751. PubMed ID: 38436532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 85 °C/85%-Stable n-i-p Perovskite Photovoltaics with NiO
    Cheng F; Cao F; Chen B; Dai X; Tang Z; Sun Y; Yin J; Li J; Zheng N; Wu B
    Adv Sci (Weinh); 2022 Sep; 9(26):e2201573. PubMed ID: 35859254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient and ultraviolet durable planar perovskite solar cells via a ferrocenecarboxylic acid modified nickel oxide hole transport layer.
    Zhang J; Luo H; Xie W; Lin X; Hou X; Zhou J; Huang S; Ou-Yang W; Sun Z; Chen X
    Nanoscale; 2018 Mar; 10(12):5617-5625. PubMed ID: 29528068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CH
    Yin J; Yuan Y; Ni J; Guan J; Zhou X; Liu Y; Ding Y; Cai H; Zhang J
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48861-48873. PubMed ID: 33059441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Self-Assembled Monolayer Modification of Nickel Oxide Nanoparticles Layer on the Performance and Application of Inverted Perovskite Solar Cells.
    Wang Q; Chueh CC; Zhao T; Cheng J; Eslamian M; Choy WCH; Jen AK
    ChemSusChem; 2017 Oct; 10(19):3794-3803. PubMed ID: 28881441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CuCl
    Han L; Hu H; Yuan M; Lin P; Wang P; Xu L; Yu X; Cui C
    Nanotechnology; 2023 May; 34(30):. PubMed ID: 37094553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational Strategies for Efficient Perovskite Solar Cells.
    Seo J; Noh JH; Seok SI
    Acc Chem Res; 2016 Mar; 49(3):562-72. PubMed ID: 26950188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronous Modulation of Energy Level Gradient and Defects for High-Efficiency HTL-Free Carbon-Based All-Inorganic Perovskite Solar Cells.
    Huo X; Wang K; Liu W; Sun W; Yin R; Sun Y; Gao Y; You T; Yin P
    Small Methods; 2023 Jul; 7(7):e2300192. PubMed ID: 37116089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perovskite Solar Cells Employing a PbSO
    Zheng J; Li F; Chen C; Du Q; Jin M; Li H; Ji M; Shen Z
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):2989-2999. PubMed ID: 34981934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creating a Dual-Functional 2D Perovskite Layer at the Interface to Enhance the Performance of Flexible Perovskite Solar Cells.
    Long C; Huang K; Chang J; Zuo C; Gao Y; Luo X; Liu B; Xie H; Chen Z; He J; Huang H; Gao Y; Ding L; Yang J
    Small; 2021 Aug; 17(32):e2102368. PubMed ID: 34174144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimensionality Control of SnO
    Zhao Y; Zhu J; He B; Tang Q
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):11058-11066. PubMed ID: 33634693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum Dot Interface-Mediated CsPbIBr
    Qi X; Wang J; Tan F; Dong C; Liu K; Li X; Zhang L; Wu H; Wang HL; Qu S; Wang Z; Wang Z
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):55349-55357. PubMed ID: 34762401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exfoliated Fluorographene Quantum Dots as Outstanding Passivants for Improved Flexible Perovskite Solar Cells.
    Yang L; Li Y; Wang L; Pei Y; Wang Z; Zhang Y; Lin H; Li X
    ACS Appl Mater Interfaces; 2020 May; 12(20):22992-23001. PubMed ID: 32343556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.