BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 35745759)

  • 1. In-Vitro Antibacterial Activity of Curcumin-Loaded Nanofibers Based on Hyaluronic Acid against Multidrug-Resistant ESKAPE Pathogens.
    Snetkov P; Rogacheva E; Kremleva A; Morozkina S; Uspenskaya M; Kraeva L
    Pharmaceutics; 2022 May; 14(6):. PubMed ID: 35745759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Curcumin, a Natural Antimicrobial Agent with Strain-Specific Activity.
    Adamczak A; Ożarowski M; Karpiński TM
    Pharmaceuticals (Basel); 2020 Jul; 13(7):. PubMed ID: 32708619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane-active amino acid-coupled polyetheramine derivatives with high selectivity and broad-spectrum antibacterial activity.
    Li H; Li Y; Wang Y; Liu L; Dong H; Satoh T
    Acta Biomater; 2022 Apr; 142():136-148. PubMed ID: 35158080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The history of the development and changes of quinolone antibacterial agents].
    Takahashi H; Hayakawa I; Akimoto T
    Yakushigaku Zasshi; 2003; 38(2):161-79. PubMed ID: 15143768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterisation of ESKAPE Pathogens with Special Reference to Multidrug Resistance and Biofilm Production in a Nepalese Hospital.
    Pandey R; Mishra SK; Shrestha A
    Infect Drug Resist; 2021; 14():2201-2212. PubMed ID: 34163185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kisameet Clay Exhibits Potent Antibacterial Activity against the ESKAPE Pathogens.
    Behroozian S; Svensson SL; Davies J
    mBio; 2016 Jan; 7(1):e01842-15. PubMed ID: 26814180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Escaping mechanisms of ESKAPE pathogens from antibiotics and their targeting by natural compounds.
    Jadimurthy R; Mayegowda SB; Nayak SC; Mohan CD; Rangappa KS
    Biotechnol Rep (Amst); 2022 Jun; 34():e00728. PubMed ID: 35686013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional Differences between E. coli and ESKAPE Pathogen GroES/GroEL.
    Sivinski J; Ambrose AJ; Panfilenko I; Zerio CJ; Machulis JM; Mollasalehi N; Kaneko LK; Stevens M; Ray AM; Park Y; Wu C; Hoang QQ; Johnson SM; Chapman E
    mBio; 2021 Jan; 12(1):. PubMed ID: 33436430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Analysis of the pathogenic characteristics of 162 severely burned patients with bloodstream infection].
    Gong YL; Yang ZC; Yin SP; Liu MX; Zhang C; Luo XQ; Peng YZ
    Zhonghua Shao Shang Za Zhi; 2016 Sep; 32(9):529-35. PubMed ID: 27647068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cracking the Challenge of Antimicrobial Drug Resistance with CRISPR/Cas9, Nanotechnology and Other Strategies in ESKAPE Pathogens.
    Zohra T; Numan M; Ikram A; Salman M; Khan T; Din M; Salman M; Farooq A; Amir A; Ali M
    Microorganisms; 2021 Apr; 9(5):. PubMed ID: 33946643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Norfloxacin salts of carboxylic acids curtail planktonic and biofilm mode of growth in ESKAPE pathogens.
    Lowrence RC; Ramakrishnan A; Sundaramoorthy NS; Shyam A; Mohan V; Subbarao HMV; Ulaganathan V; Raman T; Solomon A; Nagarajan S
    J Appl Microbiol; 2018 Feb; 124(2):408-422. PubMed ID: 29178633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibacterial activity of medicinal plants against ESKAPE: An update.
    Bhatia P; Sharma A; George AJ; Anvitha D; Kumar P; Dwivedi VP; Chandra NS
    Heliyon; 2021 Feb; 7(2):e06310. PubMed ID: 33718642
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Pi H; Nguyen HT; Venter H; Boileau AR; Woolford L; Garg S; Page SW; Russell CC; Baker JR; McCluskey A; O'Donovan LA; Trott DJ; Ogunniyi AD
    Front Microbiol; 2020; 11():1556. PubMed ID: 32849325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bactericidal efficacy of atmospheric pressure non-thermal plasma (APNTP) against the ESKAPE pathogens.
    Flynn PB; Higginbotham S; Alshraiedeh NH; Gorman SP; Graham WG; Gilmore BF
    Int J Antimicrob Agents; 2015 Jul; 46(1):101-7. PubMed ID: 25963338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial efficacy of
    Scaglione E; Sateriale D; Mantova G; Di Rosario M; Continisio L; Vitiello M; Pagliarulo C; Colicchio R; Pagliuca C; Salvatore P
    Front Microbiol; 2024; 15():1383027. PubMed ID: 38711969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Antibacterial Effects of Matrix-Induced Silver Ions against Antibiotic-Resistant ESKAPE Pathogens.
    Huang YC; Yang TY; Chen BX; Kung JC; Shih CJ
    Pharmaceuticals (Basel); 2021 Oct; 14(11):. PubMed ID: 34832878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repurposing of Drugs for Antibacterial Activities on Selected ESKAPE Bacteria
    Kamurai B; Mombeshora M; Mukanganyama S
    Int J Microbiol; 2020; 2020():8885338. PubMed ID: 33061985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Whole-Cell Screen Identifies Small Bioactives That Synergize with Polymyxin and Exhibit Antimicrobial Activities against Multidrug-Resistant Bacteria.
    Zimmerman SM; Lafontaine AJ; Herrera CM; Mclean AB; Trent MS
    Antimicrob Agents Chemother; 2020 Feb; 64(3):. PubMed ID: 31844003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibacterial Efficiency of
    Roman H; Niculescu AG; Lazăr V; Mitache MM
    Antibiotics (Basel); 2023 Nov; 12(11):. PubMed ID: 37998837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Analysis of distribution and drug resistance of pathogens from the wounds of 1 310 thermal burn patients].
    Zhang C; Gong YL; Luo XQ; Liu MX; Peng YZ
    Zhonghua Shao Shang Za Zhi; 2018 Nov; 34(11):802-808. PubMed ID: 30481922
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.