These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 35745801)
21. Integrated hot-melt extrusion - injection molding continuous tablet manufacturing platform: Effects of critical process parameters and formulation attributes on product robustness and dimensional stability. Desai PM; Hogan RC; Brancazio D; Puri V; Jensen KD; Chun JH; Myerson AS; Trout BL Int J Pharm; 2017 Oct; 531(1):332-342. PubMed ID: 28844899 [TBL] [Abstract][Full Text] [Related]
22. Sensitivity of a continuous hot-melt extrusion and strand pelletization line to control actions and composition variation. Hörmann TR; Rehrl J; Scheibelhofer O; Schaden LM; Funke A; Makert C; Khinast JG Int J Pharm; 2019 Jul; 566():239-253. PubMed ID: 31103818 [TBL] [Abstract][Full Text] [Related]
23. Upscaling of lignin precursor melt spinning by bicomponent spinning and its use for carbon fibre production. Bostan L; Hosseinaei O; Fourné R; Herrmann AS Philos Trans A Math Phys Eng Sci; 2021 Nov; 379(2209):20200334. PubMed ID: 34510930 [TBL] [Abstract][Full Text] [Related]
24. Near-infrared chemical imaging (NIR-CI) of 3D printed pharmaceuticals. Khorasani M; Edinger M; Raijada D; Bøtker J; Aho J; Rantanen J Int J Pharm; 2016 Dec; 515(1-2):324-330. PubMed ID: 27720877 [TBL] [Abstract][Full Text] [Related]
25. An Insight into Stabilization Mechanism of a Solid Dispersion of Indomethacin/Partially Hydrolyzed Polyvinyl Alcohol Prepared by Hot-Melt Extrusion. Benjasirimongkol P; Ueda K; Higashi K; Sriamornsak P; Moribe K Chem Pharm Bull (Tokyo); 2018; 66(9):859-865. PubMed ID: 30175742 [TBL] [Abstract][Full Text] [Related]
26. In-line solid state prediction during pharmaceutical hot-melt extrusion in a 12 mm twin screw extruder using Raman spectroscopy. Saerens L; Ghanam D; Raemdonck C; Francois K; Manz J; Krüger R; Krüger S; Vervaet C; Remon JP; De Beer T Eur J Pharm Biopharm; 2014 Aug; 87(3):606-15. PubMed ID: 24657540 [TBL] [Abstract][Full Text] [Related]
27. Recent studies on the processes and formulation impacts in the development of solid dispersions by hot-melt extrusion. Tran PHL; Lee BJ; Tran TTD Eur J Pharm Biopharm; 2021 Jul; 164():13-19. PubMed ID: 33887388 [TBL] [Abstract][Full Text] [Related]
28. Process monitoring and visualization solutions for hot-melt extrusion: a review. Saerens L; Vervaet C; Remon JP; De Beer T J Pharm Pharmacol; 2014 Feb; 66(2):180-203. PubMed ID: 24433422 [TBL] [Abstract][Full Text] [Related]
29. Development of immediate release (IR) 3D-printed oral dosage forms with focus on industrial relevance. Fanous M; Gold S; Hirsch S; Ogorka J; Imanidis G Eur J Pharm Sci; 2020 Dec; 155():105558. PubMed ID: 32946957 [TBL] [Abstract][Full Text] [Related]
30. An investigation into the formations of the internal microstructures of solid dispersions prepared by hot melt extrusion. Alqahtani F; Belton P; Zhang B; Al-Sharabi M; Ross S; Mithu MSH; Douroumis D; Zeitler JA; Qi S Eur J Pharm Biopharm; 2020 Oct; 155():147-161. PubMed ID: 32853694 [TBL] [Abstract][Full Text] [Related]
31. Pharmaceutical applications of hot-melt extrusion: Part II. Repka MA; Battu SK; Upadhye SB; Thumma S; Crowley MM; Zhang F; Martin C; McGinity JW Drug Dev Ind Pharm; 2007 Oct; 33(10):1043-57. PubMed ID: 17963112 [TBL] [Abstract][Full Text] [Related]
32. Preparation and properties of ProNectin F-coated biodegradable hollow fibers. El-Salmawy A; Kitagawa T; Ko IK; Murakami A; Kimura Y; Yamaoka T; Iwata H J Artif Organs; 2005; 8(4):245-51. PubMed ID: 16362522 [TBL] [Abstract][Full Text] [Related]
33. Development of an Ointment Formulation Using Hot-Melt Extrusion Technology. Bhagurkar AM; Angamuthu M; Patil H; Tiwari RV; Maurya A; Hashemnejad SM; Kundu S; Murthy SN; Repka MA AAPS PharmSciTech; 2016 Feb; 17(1):158-66. PubMed ID: 26628438 [TBL] [Abstract][Full Text] [Related]
34. A preliminary assessment of the impact of hot-melt extrusion on the physico-mechanical properties of a tablet. Boersen N; Lee TW; Shen XG; Hui HW Drug Dev Ind Pharm; 2014 Oct; 40(10):1386-94. PubMed ID: 23957611 [TBL] [Abstract][Full Text] [Related]
36. Continuous manufacture of hydroxychloroquine sulfate drug products via hot melt extrusion technology to meet increased demand during a global pandemic: From bench to pilot scale. de Margerie V; McConville C; Dadou SM; Li S; Boulet P; Aranda L; Walker A; Mohylyuk V; Jones DS; Murray B; Andrews GP Int J Pharm; 2021 Aug; 605():120818. PubMed ID: 34174359 [TBL] [Abstract][Full Text] [Related]
37. Food extrusion: An advanced process for innovation and novel product development. Lazou AE Crit Rev Food Sci Nutr; 2024; 64(14):4532-4560. PubMed ID: 36343331 [TBL] [Abstract][Full Text] [Related]
38. Pilot-Scale Melt Electrospinning of Polybutylene Succinate Fiber Mats for a Biobased and Biodegradable Face Mask. Ostheller ME; Balakrishnan NK; Beukenberg K; Groten R; Seide G Polymers (Basel); 2023 Jul; 15(13):. PubMed ID: 37447581 [TBL] [Abstract][Full Text] [Related]
39. Contribution of hot-melt extrusion technology to advance drug delivery in the 21st century. Tiwari RV; Patil H; Repka MA Expert Opin Drug Deliv; 2016; 13(3):451-64. PubMed ID: 26886062 [TBL] [Abstract][Full Text] [Related]