These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35746002)

  • 1. Control of Stimuli Sensitivity in pH-Switchable LCST/UCST-Type Thermosensitive Dendrimers by Changing the Dendrimer Structure.
    Kojima C; Fu Y; Tamaki M
    Polymers (Basel); 2022 Jun; 14(12):. PubMed ID: 35746002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-Switchable LCST/UCST-type thermosensitive behaviors of phenylalanine-modified zwitterionic dendrimers.
    Tamaki M; Kojima C
    RSC Adv; 2020 Mar; 10(18):10452-10460. PubMed ID: 35492928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual pH-sensitive and UCST-type thermosensitive dendrimers: phenylalanine-modified polyamidoamine dendrimers with carboxyl termini.
    Tamaki M; Fukushima D; Kojima C
    RSC Adv; 2018 Aug; 8(49):28147-28151. PubMed ID: 35542750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermosensitive properties of poly(amidoamine) dendrimers with peripheral phenylalanine residues.
    Tono Y; Kojima C; Haba Y; Takahashi T; Harada A; Yagi S; Kono K
    Langmuir; 2006 May; 22(11):4920-2. PubMed ID: 16700575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Optimization of Carboxy-Terminal Phenylalanine-Modified Dendrimers for T-Cell Association and Model Drug Loading.
    Shiba H; Hirose T; Sakai A; Nakase I; Matsumoto A; Kojima C
    Pharmaceutics; 2024 May; 16(6):. PubMed ID: 38931839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. T Cell-Association of Carboxy-Terminal Dendrimers with Different Bound Numbers of Phenylalanine and Their Application to Drug Delivery.
    Shiba H; Hirose T; Fu Y; Michigami M; Fujii I; Nakase I; Matsumoto A; Kojima C
    Pharmaceutics; 2023 Mar; 15(3):. PubMed ID: 36986747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. gamma-Glutamyl PAMAM dendrimer as versatile precursor for dendrimer-based targeting devices.
    Uehara T; Ishii D; Uemura T; Suzuki H; Kanei T; Takagi K; Takama M; Murakami M; Akizawa H; Arano Y
    Bioconjug Chem; 2010 Jan; 21(1):175-81. PubMed ID: 20000792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carboxy-terminal dendrimers with phenylalanine for a pH-sensitive delivery system into immune cells including T cells.
    Shiba H; Nishio M; Sawada M; Tamaki M; Michigami M; Nakai S; Nakase I; Fujii I; Matsumoto A; Kojima C
    J Mater Chem B; 2022 Apr; 10(14):2463-2470. PubMed ID: 34935852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Switchable Self-Assembly of Elastin- and Resilin-Based Block Copolypeptides with Converse Phase Transition Behaviors.
    Basheer A; Shahid S; Kang MJ; Lee JH; Lee JS; Lim DW
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):24385-24400. PubMed ID: 34006089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zwitterionic chitosan-polyamidoamine dendrimer complex nanoparticles as a pH-sensitive drug carrier.
    Liu KC; Yeo Y
    Mol Pharm; 2013 May; 10(5):1695-704. PubMed ID: 23510114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene Delivery into T-Cells Using Ternary Complexes of DNA, Lipofectamine, and Carboxy-Terminal Phenylalanine-Modified Dendrimers.
    Kojima C; Sawada M; Nakase I; Matsumoto A
    Macromol Biosci; 2023 Nov; 23(11):e2300139. PubMed ID: 37285588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable LCST/UCST-Type Polypeptoids and Their Structure-Property Relationship.
    Fu X; Xing C; Sun J
    Biomacromolecules; 2020 Dec; 21(12):4980-4988. PubMed ID: 33307699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PAMAM dendrimers with an oxyethylene unit-enriched surface as biocompatible temperature-sensitive dendrimers.
    Li X; Haba Y; Ochi K; Yuba E; Harada A; Kono K
    Bioconjug Chem; 2013 Feb; 24(2):282-90. PubMed ID: 23297782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning the Phase Transition from UCST-Type to LCST-Type by Composition Variation of Polymethacrylamide Polymers.
    Käfer F; Pretscher M; Agarwal S
    Macromol Rapid Commun; 2018 Dec; 39(24):e1800640. PubMed ID: 30284344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PAMAM dendrimers for the delivery of the antibacterial Triclosan.
    Gardiner J; Freeman S; Leach M; Green A; Alcock J; D'Emanuele A
    J Enzyme Inhib Med Chem; 2008 Oct; 23(5):623-8. PubMed ID: 18821252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonionic UCST-LCST Diblock Copolymers with Tunable Thermoresponsiveness Synthesized via PhotoRAFT Polymerization.
    Xu J; Abetz V
    Macromol Rapid Commun; 2021 Apr; 42(7):e2000648. PubMed ID: 33448085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LCST-UCST Transition Property of a Novel Retarding Swelling and Thermosensitive Particle Gel.
    Li L; Guo J; Kang C
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge-Determined LCST/UCST Behavior in Ionic Polypeptoids.
    Xing C; Shi Z; Tian J; Sun J; Li Z
    Biomacromolecules; 2018 Jun; 19(6):2109-2116. PubMed ID: 29664626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Switch It Inside-Out: "Schizophrenic" Behavior of All Thermoresponsive UCST-LCST Diblock Copolymers.
    Papadakis CM; Müller-Buschbaum P; Laschewsky A
    Langmuir; 2019 Jul; 35(30):9660-9676. PubMed ID: 31314540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel nanocomposite hydrogel with precisely tunable UCST and LCST.
    Xia M; Cheng Y; Meng Z; Jiang X; Chen Z; Theato P; Zhu M
    Macromol Rapid Commun; 2015 Mar; 36(5):477-82. PubMed ID: 25611464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.