These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35746035)

  • 1. Towards an All-Solid-State Electrochromic Device: A Review of Solid-State Electrolytes and the Way Forward.
    Au BW; Chan KY
    Polymers (Basel); 2022 Jun; 14(12):. PubMed ID: 35746035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Realisation of Solid-State Electrochromic Devices Based on Gel Electrolyte.
    Au BW; Chan KY; Sahdan MZ; Chong AS; Knipp D
    F1000Res; 2022; 11():380. PubMed ID: 35706997
    [No Abstract]   [Full Text] [Related]  

  • 3. CaF
    Chen X; Zhang H; Li W; Xiao Y; Zhang X; Li Y
    Environ Sci Ecotechnol; 2022 Apr; 10():100164. PubMed ID: 36159735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochromic Asymmetric Supercapacitor Windows Enable Direct Determination of Energy Status by the Naked Eye.
    Zhong Y; Chai Z; Liang Z; Sun P; Xie W; Zhao C; Mai W
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34085-34092. PubMed ID: 28884570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of quasi solid electrolytes in organic based electrochromic devices: A mini review.
    Orimolade BO; Draper ER
    Chemistry; 2024 Apr; 30(23):e202303880. PubMed ID: 38224310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-in-One Gel-Based Electrochromic Devices: Strengths and Recent Developments.
    Alesanco Y; ViƱuales A; Rodriguez J; Tena-Zaera R
    Materials (Basel); 2018 Mar; 11(3):. PubMed ID: 29534466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Implementation of Electrochromic Smart Windows with Self-Driven Thermoelectric Power Generation.
    Xie X; Ji H; Wang L; Wang S; Chen Q; Luo R
    Nanomaterials (Basel); 2024 Jun; 14(12):. PubMed ID: 38921903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid materials and polymer electrolytes for electrochromic device applications.
    Thakur VK; Ding G; Ma J; Lee PS; Lu X
    Adv Mater; 2012 Aug; 24(30):4071-96. PubMed ID: 22581710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Ultrafast, Energy-Efficient Electrochromic and Thermochromic Device for Smart Windows.
    Deng B; Zhu Y; Wang X; Zhu J; Liu M; Liu M; He Y; Zhu C; Zhang C; Meng H
    Adv Mater; 2023 Sep; 35(35):e2302685. PubMed ID: 37358298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rejuvenation of Electrochromic Devices.
    Li W; Zhang X; Yan D; Wang L; Sun W; Li Z; Deng J; Zhao J; Li Y
    Small Methods; 2024 Jan; 8(1):e2300850. PubMed ID: 37727054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Solar-Driven Flexible Electrochromic Supercapacitor.
    Zhang D; Sun B; Huang H; Gan Y; Xia Y; Liang C; Zhang W; Zhang J
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32182738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat-Insulating Black Electrochromic Device Enabled by Reversible Nickel-Copper Electrodeposition.
    Guo X; Chen J; Eh AL; Poh WC; Jiang F; Jiang F; Chen J; Lee PS
    ACS Appl Mater Interfaces; 2022 May; 14(17):20237-20246. PubMed ID: 35467337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton and Redox Couple Synergized Strategy for Aqueous Low Voltage-Driven WO
    Xie H; Wang Z; Khalifa MA; Ke Y; Zheng J; Xu C
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):30469-30478. PubMed ID: 37310753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A transparent electrochromic metal-insulator switching device with three-terminal transistor geometry.
    Katase T; Onozato T; Hirono M; Mizuno T; Ohta H
    Sci Rep; 2016 May; 6():25819. PubMed ID: 27174791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-Low Power Electrochromic Heat Shutters Through Tailoring Diffusion-Controlled Behaviors.
    In YR; Kim YM; Lee Y; Choi WY; Kim SH; Lee SW; Moon HC
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30635-30642. PubMed ID: 32519836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White.
    Bi Z; Li X; Chen Y; He X; Xu X; Gao X
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29872-29880. PubMed ID: 28809104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards two-dimensional color tunability of all-solid-state electrochromic devices using carbon dots.
    Li C; Zhen M; Sun B; Hong Y; Xiong J; Xue W; Li X; Guo Z; Liu L
    Front Chem; 2022; 10():1001531. PubMed ID: 36110136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochromic Photodetectors: Toward Smarter Glasses and Nano Reflective Displays via an Electrolytic Mechanism.
    Hai Z; Karbalaei Akbari M; Wei Z; Zuallaert J; De Neve W; Xue C; Xu H; Verpoort F; Zhuiykov S
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):27997-28004. PubMed ID: 31302998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterocycle- and Amine-Free Electrochromic and Electrofluorochromic Molecules for Energy-Saving See-Through Smart Windows and Displays.
    Navya PV; Ganesan K; Neyts EC; Sampath S
    Chemistry; 2024 Jul; 30(40):e202401647. PubMed ID: 38747442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of electrochromic devices.
    Pawlicka A
    Recent Pat Nanotechnol; 2009; 3(3):177-81. PubMed ID: 19958283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.