These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35746052)

  • 1. Post-Consumer Textile Waste Classification through Near-Infrared Spectroscopy, Using an Advanced Deep Learning Approach.
    Riba JR; Cantero R; Riba-Mosoll P; Puig R
    Polymers (Basel); 2022 Jun; 14(12):. PubMed ID: 35746052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of Textile Samples Using Data Fusion Combining Near- and Mid-Infrared Spectral Information.
    Riba JR; Cantero R; Puig R
    Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35956591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. State of the art of post-consumer textile waste upcycling to reach the zero waste milestone.
    Stanescu MD
    Environ Sci Pollut Res Int; 2021 Mar; 28(12):14253-14270. PubMed ID: 33515405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Death by waste: Fashion and textile circular economy case.
    Shirvanimoghaddam K; Motamed B; Ramakrishna S; Naebe M
    Sci Total Environ; 2020 May; 718():137317. PubMed ID: 32088483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mobilisation of textile waste to recover high added value products and energy for the transition to circular economy.
    Papamichael I; Voukkali I; Economou F; Loizia P; Demetriou G; Esposito M; Naddeo V; Liscio MC; Sospiro P; Zorpas AA
    Environ Res; 2024 Feb; 242():117716. PubMed ID: 37995999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Trends in Sustainable Textile Waste Recycling Methods: Current Situation and Future Prospects.
    Pensupa N; Leu SY; Hu Y; Du C; Liu H; Jing H; Wang H; Lin CSK
    Top Curr Chem (Cham); 2017 Aug; 375(5):76. PubMed ID: 28815435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies of Recovery and Organic Recycling Used in Textile Waste Management.
    Wojnowska-Baryła I; Bernat K; Zaborowska M
    Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmentally-friendly thermal and acoustic insulation materials from recycled textiles.
    Islam S; Bhat G
    J Environ Manage; 2019 Dec; 251():109536. PubMed ID: 31542622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A sustainable recycling process and its life cycle assessment for valorising post-consumer textile materials for thermal insulation applications.
    Karmakar S; Majumdar A; Butola BS
    Waste Manag Res; 2024 Sep; ():734242X241270933. PubMed ID: 39344478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transforming textile waste into nanocellulose for a circular future.
    Sathasivam T; Sugiarto S; Yew MPY; Oh XY; Chan SY; Chan BQY; Tim MJ; Kai D
    Nanoscale; 2024 Aug; 16(30):14168-14194. PubMed ID: 39012322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring an alternative to the Chilean textile waste: A carbon footprint assessment of a textile recycling process.
    Espinoza Pérez LA; Espinoza Pérez AT; Vásquez ÓC
    Sci Total Environ; 2022 Jul; 830():154542. PubMed ID: 35337866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Life cycle assessment of alternatives for industrial textile recycling.
    Espinoza-Pérez LA; Espinoza-Pérez AT; Vásquez ÓC
    Sci Total Environ; 2024 Jun; 927():172161. PubMed ID: 38599402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eco-Sustainability of the Textile Production: Waste Recovery and Current Recycling in the Composites World.
    Patti A; Cicala G; Acierno D
    Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33396936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determining the composition of post-consumer flexible multilayer plastic packaging with near-infrared spectroscopy.
    Chen X; Kroell N; Wickel J; Feil A
    Waste Manag; 2021 Mar; 123():33-41. PubMed ID: 33556715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of the Eco-Efficiency of the Circular Economy in the Recovery of Cellulose from the Shredding of Textile Waste.
    de Oliveira Neto GC; Teixeira MM; Souza GLV; Arns VD; Tucci HNP; Amorim M
    Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Market assessment to improve fibre recycling within the EU textile sector.
    Boschmeier E; Ipsmiller W; Bartl A
    Waste Manag Res; 2024 Feb; 42(2):135-145. PubMed ID: 37313862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Qualitative classification of waste garments for textile recycling based on machine vision and attention mechanisms.
    Tian R; Lv Z; Fan Y; Wang T; Sun M; Xu Z
    Waste Manag; 2024 Jun; 183():74-86. PubMed ID: 38728770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The first mile problem in the circular economy supply chains - Collecting recyclable textiles from consumers.
    Jäämaa L; Kaipia R
    Waste Manag; 2022 Mar; 141():173-182. PubMed ID: 35115212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-consumer textile thermochemical recycling to fuels and biocarbon: A critical review.
    Athanasopoulos P; Zabaniotou A
    Sci Total Environ; 2022 Aug; 834():155387. PubMed ID: 35461931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recycled fibers from pre- and post-consumer textile waste as blend constituents in manufacturing 100% cotton yarns in ring spinning: A sustainable and eco-friendly approach.
    Arafat Y; Uddin AJ
    Heliyon; 2022 Nov; 8(11):e11275. PubMed ID: 36339750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.