These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 35746217)
1. A Comparison of Inertial Measurement Unit and Motion Capture Measurements of Tibiofemoral Kinematics during Simulated Pivot Landings. Baek SY; Ajdaroski M; Shahshahani PM; Beaulieu ML; Esquivel AO; Ashton-Miller JA Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746217 [TBL] [Abstract][Full Text] [Related]
2. Measurements of tibiofemoral kinematics during soft and stiff drop landings using biplane fluoroscopy. Myers CA; Torry MR; Peterson DS; Shelburne KB; Giphart JE; Krong JP; Woo SL; Steadman JR Am J Sports Med; 2011 Aug; 39(8):1714-22. PubMed ID: 21602566 [TBL] [Abstract][Full Text] [Related]
3. Testing a Quaternion Conversion Method to Determine Human Three-Dimensional Tibiofemoral Angles During an In Vitro Simulated Jump Landing. Ajdaroski M; Ashton-Miller JA; Baek SY; Shahshahani PM; Esquivel AO J Biomech Eng; 2022 Apr; 144(4):. PubMed ID: 34549272 [TBL] [Abstract][Full Text] [Related]
4. Anterior cruciate ligament function in providing rotational stability assessed by medial and lateral tibiofemoral compartment translations and subluxations. Noyes FR; Jetter AW; Grood ES; Harms SP; Gardner EJ; Levy MS Am J Sports Med; 2015 Mar; 43(3):683-92. PubMed ID: 25540296 [TBL] [Abstract][Full Text] [Related]
5. [In vitro analysis of the continuous active patellofemoral kinematics of the normal and prosthetic knee]. Jenny JY; Lefèbvre Y; Vernizeau M; Lavaste F; Skalli W Rev Chir Orthop Reparatrice Appar Mot; 2002 Dec; 88(8):797-802. PubMed ID: 12503021 [TBL] [Abstract][Full Text] [Related]
6. Evaluating the validity and reliability of inertial measurement units for determining knee and trunk kinematics during athletic landing and cutting movements. Chia L; Andersen JT; McKay MJ; Sullivan J; Megalaa T; Pappas E J Electromyogr Kinesiol; 2021 Oct; 60():102589. PubMed ID: 34418582 [TBL] [Abstract][Full Text] [Related]
7. There Are No Kinematic Differences Between Inframeniscal and Suprameniscal Anterolateral Ligament Injury in the Anterior Cruciate Ligament-Deficient Knee. Burkhart TA; Matthew M; McGuffin WS; Blokker A; Holdsworth D; Degen RM; Getgood A Am J Sports Med; 2018 Dec; 46(14):3391-3399. PubMed ID: 30388039 [TBL] [Abstract][Full Text] [Related]
8. The Effect of an ACL Reconstruction in Controlling Rotational Knee Stability in Knees with Intact and Physiologic Laxity of Secondary Restraints as Defined by Tibiofemoral Compartment Translations and Graft Forces. Noyes FR; Huser LE; Levy MS J Bone Joint Surg Am; 2018 Apr; 100(7):586-597. PubMed ID: 29613928 [TBL] [Abstract][Full Text] [Related]
9. Coupled motions under compressive load in intact and ACL-deficient knees: a cadaveric study. Liu-Barba D; Hull ML; Howell SM J Biomech Eng; 2007 Dec; 129(6):818-24. PubMed ID: 18067385 [TBL] [Abstract][Full Text] [Related]
11. Patellar resurfacing has minimal impact on in vitro tibiofemoral kinematics during deep knee flexion in total knee arthroplasty. Kono K; Tomita T; Yamazaki T; Iwamoto K; Tamaki M; D'Lima DD Knee; 2021 Jun; 30():163-169. PubMed ID: 33932828 [TBL] [Abstract][Full Text] [Related]
12. Predicting Leg Forces and Knee Moments Using Inertial Measurement Units: An In Vitro Study. Ajdaroski M; Baek SY; Ashton-Miller JA; Esquivel AO J Biomech Eng; 2024 Feb; 146(2):. PubMed ID: 38019183 [TBL] [Abstract][Full Text] [Related]
13. Effect of ACL transection on internal tibial rotation in an in vitro simulated pivot landing. Oh YK; Kreinbrink JL; Ashton-Miller JA; Wojtys EM J Bone Joint Surg Am; 2011 Feb; 93(4):372-80. PubMed ID: 21325589 [TBL] [Abstract][Full Text] [Related]
14. The Effects of Anterolateral Tenodesis on Tibiofemoral Contact Pressures and Kinematics. Inderhaug E; Stephen JM; El-Daou H; Williams A; Amis AA Am J Sports Med; 2017 Nov; 45(13):3081-3088. PubMed ID: 28763623 [TBL] [Abstract][Full Text] [Related]
15. [Validation of an experimental protocol of an optoelectronic analysis of continuous active knee kinematics in vitro]. Jenny JY; Lefèbvre Y; Vernizeau M; Lavaste F; Skalli W Rev Chir Orthop Reparatrice Appar Mot; 2002 Dec; 88(8):790-6. PubMed ID: 12503020 [TBL] [Abstract][Full Text] [Related]
16. Tibiofemoral and patellofemoral joint 3D-kinematics in patients with posterior cruciate ligament deficiency compared to healthy volunteers. von Eisenhart-Rothe R; Lenze U; Hinterwimmer S; Pohlig F; Graichen H; Stein T; Welsch F; Burgkart R BMC Musculoskelet Disord; 2012 Nov; 13():231. PubMed ID: 23181354 [TBL] [Abstract][Full Text] [Related]
17. Validation of a Device to Measure Knee Joint Angles for a Dynamic Movement. Ajdaroski M; Tadakala R; Nichols L; Esquivel A Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32245187 [TBL] [Abstract][Full Text] [Related]
18. What strains the anterior cruciate ligament during a pivot landing? Oh YK; Lipps DB; Ashton-Miller JA; Wojtys EM Am J Sports Med; 2012 Mar; 40(3):574-83. PubMed ID: 22223717 [TBL] [Abstract][Full Text] [Related]
19. Posterior Tibial Slope Angle Correlates With Peak Sagittal and Frontal Plane Knee Joint Loading During Robotic Simulations of Athletic Tasks. Bates NA; Nesbitt RJ; Shearn JT; Myer GD; Hewett TE Am J Sports Med; 2016 Jul; 44(7):1762-70. PubMed ID: 27159295 [TBL] [Abstract][Full Text] [Related]
20. An In Vitro Robotic Assessment of the Anterolateral Ligament, Part 1: Secondary Role of the Anterolateral Ligament in the Setting of an Anterior Cruciate Ligament Injury. Rasmussen MT; Nitri M; Williams BT; Moulton SG; Cruz RS; Dornan GJ; Goldsmith MT; LaPrade RF Am J Sports Med; 2016 Mar; 44(3):585-92. PubMed ID: 26684663 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]