BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 35746246)

  • 1. A Vision-Based System for Stage Classification of Parkinsonian Gait Using Machine Learning and Synthetic Data.
    Marquez Chavez J; Tang W
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Approach to Support the Detection of Parkinson's Disease in IMU-Based Gait Analysis.
    Trabassi D; Serrao M; Varrecchia T; Ranavolo A; Coppola G; De Icco R; Tassorelli C; Castiglia SF
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A low-cost vision system based on the analysis of motor features for recognition and severity rating of Parkinson's Disease.
    Buongiorno D; Bortone I; Cascarano GD; Trotta GF; Brunetti A; Bevilacqua V
    BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 9):243. PubMed ID: 31830986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer Vision and Machine Learning-Based Gait Pattern Recognition for Flat Fall Prediction.
    Chen B; Chen C; Hu J; Sayeed Z; Qi J; Darwiche HF; Little BE; Lou S; Darwish M; Foote C; Palacio-Lascano C
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated Parkinson's disease recognition based on statistical pooling method using acoustic features.
    Yaman O; Ertam F; Tuncer T
    Med Hypotheses; 2020 Feb; 135():109483. PubMed ID: 31954340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Parkinsonian tremor quantification based on automatic label modification and SVM with RBF kernel.
    Li Y; Wang Z; Dai H
    Physiol Meas; 2023 Feb; 44(2):. PubMed ID: 36735971
    [No Abstract]   [Full Text] [Related]  

  • 7. Evaluation of Three Machine Learning Algorithms for the Automatic Classification of EMG Patterns in Gait Disorders.
    Fricke C; Alizadeh J; Zakhary N; Woost TB; Bogdan M; Classen J
    Front Neurol; 2021; 12():666458. PubMed ID: 34093413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feature Analysis of Smart Shoe Sensors for Classification of Gait Patterns.
    Sunarya U; Sun Hariyani Y; Cho T; Roh J; Hyeong J; Sohn I; Kim S; Park C
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33147794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-Time Classification of Patients with Balance Disorders vs. Normal Subjects Using a Low-Cost Small Wireless Wearable Gait Sensor.
    Nukala BT; Nakano T; Rodriguez A; Tsay J; Lopez J; Nguyen TQ; Zupancic S; Lie DY
    Biosensors (Basel); 2016 Nov; 6(4):. PubMed ID: 27916817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of supervised machine learning algorithms in the classification of sagittal gait patterns of cerebral palsy children with spastic diplegia.
    Zhang Y; Ma Y
    Comput Biol Med; 2019 Mar; 106():33-39. PubMed ID: 30665140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-Contact Early Warning of Shaking Palsy.
    Yang X; Fan D; Ren A; Zhao N; Zhang Z; Haider D; Khan MB; Tian J
    IEEE J Transl Eng Health Med; 2019; 7():1800408. PubMed ID: 31392103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data-driven gait analysis for diagnosis and severity rating of Parkinson's disease.
    E B; D B; Elumalai VK; K U
    Med Eng Phys; 2021 May; 91():54-64. PubMed ID: 34074466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Machine Learning Approach for Walking Classification in Elderly People with Gait Disorders.
    Peimankar A; Winther TS; Ebrahimi A; Wiil UK
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification.
    Lee HS; Hong H; Jung DC; Park S; Kim J
    Med Phys; 2017 Jul; 44(7):3604-3614. PubMed ID: 28376281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning classification based on k-Nearest Neighbors for PolSAR data.
    Ferreira JA; Rodrigues AKG; Ospina R; Gomez L
    An Acad Bras Cienc; 2024; 96(1):e20230064. PubMed ID: 38656054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An automatic non-invasive method for Parkinson's disease classification.
    Joshi D; Khajuria A; Joshi P
    Comput Methods Programs Biomed; 2017 Jul; 145():135-145. PubMed ID: 28552119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data-Driven Based Approach to Aid Parkinson's Disease Diagnosis.
    Khoury N; Attal F; Amirat Y; Oukhellou L; Mohammed S
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30634600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a Neurodegenerative Disease Gait Classification Algorithm Using Multiscale Sample Entropy and Machine Learning Classifiers.
    Nam Nguyen QD; Liu AB; Lin CW
    Entropy (Basel); 2020 Nov; 22(12):. PubMed ID: 33266524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic Classification of Tremor Severity in Parkinson's Disease Using a Wearable Device.
    Jeon H; Lee W; Park H; Lee HJ; Kim SK; Kim HB; Jeon B; Park KS
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28891942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soft Clustering for Enhancing the Diagnosis of Chronic Diseases over Machine Learning Algorithms.
    Aldhyani THH; Alshebami AS; Alzahrani MY
    J Healthc Eng; 2020; 2020():4984967. PubMed ID: 32211144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.