BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35746251)

  • 1. Bridge Crack Inspection Efficiency of an Unmanned Aerial Vehicle System with a Laser Ranging Module.
    Kao SP; Wang FL; Lin JS; Tsai J; Chu YD; Hung PS
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concrete Crack Identification Using a UAV Incorporating Hybrid Image Processing.
    Kim H; Lee J; Ahn E; Cho S; Shin M; Sim SH
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28880254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Crack Identification Techniques for an Aging Concrete Bridge Inspection Using an Unmanned Aerial Vehicle.
    Kim IH; Jeon H; Baek SC; Hong WH; Jung HJ
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29890652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining the YOLOv4 Deep Learning Model with UAV Imagery Processing Technology in the Extraction and Quantization of Cracks in Bridges.
    Kao SP; Chang YC; Wang FL
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crack Detection of Bridge Concrete Components Based on Large-Scene Images Using an Unmanned Aerial Vehicle.
    Xu Z; Wang Y; Hao X; Fan J
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SMART SKY EYE System for Preliminary Structural Safety Assessment of Buildings Using Unmanned Aerial Vehicles.
    Bae J; Lee J; Jang A; Ju YK; Park MJ
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Approach for UAV Image Crack Detection.
    Li Y; Ma J; Zhao Z; Shi G
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Configuration and specifications of an Unmanned Aerial Vehicle (UAV) for early site specific weed management.
    Torres-Sánchez J; López-Granados F; De Castro AI; Peña-Barragán JM
    PLoS One; 2013; 8(3):e58210. PubMed ID: 23483997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vision-Based Autonomous Following of a Moving Platform and Landing for an Unmanned Aerial Vehicle.
    Morales J; Castelo I; Serra R; Lima PU; Basiri M
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UAV-Driven Structural Crack Detection and Location Determination Using Convolutional Neural Networks.
    Choi D; Bell W; Kim D; Kim J
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33918951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of Cracks in Concrete Structures Using an Unmanned Aerial Vehicle.
    Woo HJ; Seo DM; Kim MS; Park MS; Hong WH; Baek SC
    Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperative UAV-UGV Autonomous Power Pylon Inspection: An Investigation of Cooperative Outdoor Vehicle Positioning Architecture.
    Cantieri A; Ferraz M; Szekir G; Antônio Teixeira M; Lima J; Schneider Oliveira A; Aurélio Wehrmeister M
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33182301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-Time Vehicle-Detection Method in Bird-View Unmanned-Aerial-Vehicle Imagery.
    Han S; Yoo J; Kwon S
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Real-Time Autonomous Crack Inspection System Based on Unmanned Aerial Vehicles.
    Tse KW; Pi R; Sun Y; Wen CY; Feng Y
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monocular Vision System for Fixed Altitude Flight of Unmanned Aerial Vehicles.
    Huang KL; Chiu CC; Chiu SY; Teng YJ; Hao SS
    Sensors (Basel); 2015 Jul; 15(7):16848-65. PubMed ID: 26184213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Deep Learning Approach for Surface Crack Classification and Segmentation in Unmanned Aerial Vehicle Assisted Infrastructure Inspections.
    Egodawela S; Khodadadian Gostar A; Buddika HADS; Dammika AJ; Harischandra N; Navaratnam S; Mahmoodian M
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autonomous Vision-Based Aerial Grasping for Rotorcraft Unmanned Aerial Vehicles.
    Lin L; Yang Y; Cheng H; Chen X
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robotic System for Inspection by Contact of Bridge Beams Using UAVs.
    Sanchez-Cuevas PJ; Ramon-Soria P; Arrue B; Ollero A; Heredia G
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30646535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer Vision and Augmented Reality for Human-Centered Fatigue Crack Inspection.
    Mojidra R; Li J; Mohammadkhorasani A; Moreu F; Bennett C; Collins W
    Sensors (Basel); 2024 Jun; 24(11):. PubMed ID: 38894475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Analysis of the Influence of Flight Parameters in the Generation of Unmanned Aerial Vehicle (UAV) Orthomosaicks to Survey Archaeological Areas.
    Mesas-Carrascosa FJ; Notario García MD; Meroño de Larriva JE; García-Ferrer A
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27809293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.