These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
437 related articles for article (PubMed ID: 35746283)
1. Weak Fault Feature Extraction of Rolling Bearings Based on Adaptive Variational Modal Decomposition and Multiscale Fuzzy Entropy. Lv Z; Han S; Peng L; Yang L; Cao Y Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746283 [TBL] [Abstract][Full Text] [Related]
2. Rolling Bearing Fault Diagnosis Based on VMD-MPE and PSO-SVM. Ye M; Yan X; Jia M Entropy (Basel); 2021 Jun; 23(6):. PubMed ID: 34208777 [TBL] [Abstract][Full Text] [Related]
3. Research on Fault Diagnosis of Rolling Bearings Based on Variational Mode Decomposition Improved by the Niche Genetic Algorithm. Shi R; Wang B; Wang Z; Liu J; Feng X; Dong L Entropy (Basel); 2022 Jun; 24(6):. PubMed ID: 35741545 [TBL] [Abstract][Full Text] [Related]
4. The IBA-ISMO Method for Rolling Bearing Fault Diagnosis Based on VMD-Sample Entropy. Zhuang D; Liu H; Zheng H; Xu L; Gu Z; Cheng G; Qiu J Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679788 [TBL] [Abstract][Full Text] [Related]
5. Compound Fault Feature Extraction of Rolling Bearing Acoustic Signals Based on AVMD-IMVO-MCKD. Wu S; Zhou J; Liu T Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146118 [TBL] [Abstract][Full Text] [Related]
6. Fault Feature Extraction Method for Rolling Bearings Based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Variational Mode Decomposition. Wang L; Li H; Xi T; Wei S Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067814 [TBL] [Abstract][Full Text] [Related]
7. Fault Diagnosis for Rolling Bearings Based on Fine-Sorted Dispersion Entropy and SVM Optimized with Mutation SCA-PSO. Fu W; Tan J; Xu Y; Wang K; Chen T Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267118 [TBL] [Abstract][Full Text] [Related]
8. Intelligent Fault Identification for Rolling Bearings Fusing Average Refined Composite Multiscale Dispersion Entropy-Assisted Feature Extraction and SVM with Multi-Strategy Enhanced Swarm Optimization. Shi H; Fu W; Li B; Shao K; Yang D Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33923036 [TBL] [Abstract][Full Text] [Related]
9. Rolling Bearing Fault Diagnosis Based on WOA-VMD-MPE and MPSO-LSSVM. Jin Z; Chen G; Yang Z Entropy (Basel); 2022 Jul; 24(7):. PubMed ID: 35885150 [TBL] [Abstract][Full Text] [Related]
10. GMPSO-VMD Algorithm and Its Application to Rolling Bearing Fault Feature Extraction. Ding J; Huang L; Xiao D; Li X Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32244305 [TBL] [Abstract][Full Text] [Related]
11. Feature Enhancement Method of Rolling Bearing Based on K-Adaptive VMD and RBF-Fuzzy Entropy. Jiao J; Yue J; Pei D Entropy (Basel); 2022 Jan; 24(2):. PubMed ID: 35205492 [TBL] [Abstract][Full Text] [Related]
12. Incipient fault feature extraction of rolling bearings based on the MVMD and Teager energy operator. Ma J; Wu J; Wang X ISA Trans; 2018 Sep; 80():297-311. PubMed ID: 29880275 [TBL] [Abstract][Full Text] [Related]
13. Intelligent Fault Diagnosis of Rolling-Element Bearings Using a Self-Adaptive Hierarchical Multiscale Fuzzy Entropy. Yan X; Xu Y; Jia M Entropy (Basel); 2021 Aug; 23(9):. PubMed ID: 34573753 [TBL] [Abstract][Full Text] [Related]
14. A Novel Method Based on Multi-Island Genetic Algorithm Improved Variational Mode Decomposition and Multi-Features for Fault Diagnosis of Rolling Bearing. Liang T; Lu H Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286764 [TBL] [Abstract][Full Text] [Related]
15. Fault Diagnosis Method for Rolling Bearings Based on Grey Relation Degree. Mao Y; Xin J; Zang L; Jiao J; Xue C Entropy (Basel); 2024 Feb; 26(3):. PubMed ID: 38539734 [TBL] [Abstract][Full Text] [Related]
16. Fault Diagnosis for Rolling Bearing of Combine Harvester Based on Composite-Scale-Variable Dispersion Entropy and Self-Optimization Variational Mode Decomposition Algorithm. Jiang W; Shan Y; Xue X; Ma J; Chen Z; Zhang N Entropy (Basel); 2023 Jul; 25(8):. PubMed ID: 37628141 [TBL] [Abstract][Full Text] [Related]
17. A New Method Based on Time-Varying Filtering Intrinsic Time-Scale Decomposition and General Refined Composite Multiscale Sample Entropy for Rolling-Bearing Feature Extraction. Ma J; Han S; Li C; Zhan L; Zhang GZ Entropy (Basel); 2021 Apr; 23(4):. PubMed ID: 33920417 [TBL] [Abstract][Full Text] [Related]
18. A new fault feature extraction method of rolling bearings based on the improved self-selection ICEEMDAN-permutation entropy. Xiao M; Wang Z; Zhao Y; Geng G; Dustdar S; Donta PK; Ji G ISA Trans; 2023 Dec; 143():536-547. PubMed ID: 37770368 [TBL] [Abstract][Full Text] [Related]
19. Intelligent Fault Diagnosis of Rolling Bearings Based on a Complete Frequency Range Feature Extraction and Combined Feature Selection Methodology. Xue Z; Huang Y; Zhang W; Shi J; Luo H Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960468 [TBL] [Abstract][Full Text] [Related]
20. Fault Diagnosis for Rolling Bearings Using Optimized Variational Mode Decomposition and Resonance Demodulation. Zhang C; Wang Y; Deng W Entropy (Basel); 2020 Jul; 22(7):. PubMed ID: 33286510 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]