These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35746308)

  • 1. Consistent Optimization of Blast Furnace Ironmaking Process Based on Controllability Assurance Soft Sensor Modeling.
    Li J; Yang C; Yang C
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-Gate Mixture-of-Experts Stacked Autoencoders for Quality Prediction in Blast Furnace Ironmaking.
    Zhu H; He B; Zhang X
    ACS Omega; 2022 Nov; 7(45):41296-41303. PubMed ID: 36406512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Survey of Data-Driven Soft Sensing in Ironmaking System: Research Status and Opportunities.
    Yan F; Kong L; Li Y; Zhang H; Yang C; Chai L
    ACS Omega; 2024 Jun; 9(24):25539-25554. PubMed ID: 38911729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Denoising Multiscale Spectral Graph Wavelet Neural Networks for Gas Utilization Ratio Prediction in Blast Furnace.
    Liu C; Li J; Li Y; Tan J
    IEEE Trans Neural Netw Learn Syst; 2024 Sep; PP():. PubMed ID: 39302798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Multiobjective Evolutionary Nonlinear Ensemble Learning With Evolutionary Feature Selection for Silicon Prediction in Blast Furnace.
    Wang X; Hu T; Tang L
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):2080-2093. PubMed ID: 33661737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data-Driven Robust M-LS-SVR-Based NARX Modeling for Estimation and Control of Molten Iron Quality Indices in Blast Furnace Ironmaking.
    Zhou P; Guo D; Wang H; Chai T
    IEEE Trans Neural Netw Learn Syst; 2018 Sep; 29(9):4007-4021. PubMed ID: 28976324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reinforcement Learning for Blast Furnace Ironmaking Operation With Safety and Partial Observation Considerations.
    Jiang K; Jiang Z; Jiang X; Xie Y; Gui W
    IEEE Trans Neural Netw Learn Syst; 2024 Mar; 35(3):3077-3090. PubMed ID: 38231813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature Measurement Method for Blast Furnace Molten Iron Based on Infrared Thermography and Temperature Reduction Model.
    Pan D; Jiang Z; Chen Z; Gui W; Xie Y; Yang C
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30404156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust Online Sequential RVFLNs for Data Modeling of Dynamic Time-Varying Systems With Application of an Ironmaking Blast Furnace.
    Zhou P; Li W; Wang H; Li M; Chai T
    IEEE Trans Cybern; 2020 Nov; 50(11):4783-4795. PubMed ID: 31226096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual ensemble online modeling for dynamic estimation of hot metal silicon content in blast furnace system.
    Li Y; Zhang J; Zhang S; Xiao W
    ISA Trans; 2022 Sep; 128(Pt A):686-697. PubMed ID: 34686370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supervised Multi-Layer Conditional Variational Auto-Encoder for Process Modeling and Soft Sensor.
    Tang X; Yan J; Li Y
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiscale dynamic analysis of blast furnace system based on intensive signal processing.
    Chu Y; Gao C; Liu X
    Chaos; 2010 Sep; 20(3):033102. PubMed ID: 20887042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of Hydrogen-Rich Gas in Blast Furnace Ironmaking of V-bearing Titanomagnetite: Mass and Energy Balance Calculations.
    Gao X; Zhang R; You Z; Yu W; Dang J; Bai C
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning of Partially Labeled Data for Quality Prediction Based on Stacked Target-Related Laplacian Autoencoder.
    He B; Zhang X; Song Z
    IEEE Trans Neural Netw Learn Syst; 2024 Mar; 35(3):2927-2941. PubMed ID: 38015681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating a Top-Gas Recycling and CO
    Hu Y; Qiu Y; Chen J; Hao L; Rufford TE; Rudolph V; Wang G
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on Heat Transfer Characteristics and Intelligent Optimization of Protective Clothing Materials in front of the Blast Furnace.
    Hu Z; Li Y; Duan Y; Han Y; Yang A; Chen Z; Wang L
    Comput Intell Neurosci; 2022; 2022():5611467. PubMed ID: 36199967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudo-Labeling Optimization Based Ensemble Semi-Supervised Soft Sensor in the Process Industry.
    Li Y; Jin H; Dong S; Yang B; Chen X
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Deep Supervised Learning Framework for Data-Driven Soft Sensor Modeling of Industrial Processes.
    Yuan X; Gu Y; Wang Y; Yang C; Gui W
    IEEE Trans Neural Netw Learn Syst; 2020 Nov; 31(11):4737-4746. PubMed ID: 31880568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soft Sensor Modeling Method for the Marine Lysozyme Fermentation Process Based on ISOA-GPR Weighted Ensemble Learning.
    Lu N; Wang B; Zhu X
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Prediction of the Gas Utilization Ratio based on TS Fuzzy Neural Network and Particle Swarm Optimization.
    Zhang S; Jiang H; Yin Y; Xiao W; Zhao B
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29461469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.