These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 35746338)
1. Remaining Useful Life Prediction Method for Bearings Based on LSTM with Uncertainty Quantification. Yang J; Peng Y; Xie J; Wang P Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746338 [TBL] [Abstract][Full Text] [Related]
2. Intelligent Online Monitoring of Rolling Bearing: Diagnosis and Prognosis. Hotait H; Chiementin X; Rasolofondraibe L Entropy (Basel); 2021 Jun; 23(7):. PubMed ID: 34206610 [TBL] [Abstract][Full Text] [Related]
3. Remaining Useful Life Estimation for Engineered Systems Operating under Uncertainty with Causal GraphNets. Mylonas C; Chatzi E Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640645 [TBL] [Abstract][Full Text] [Related]
4. Bearing remaining useful life prediction using support vector machine and hybrid degradation tracking model. Yan M; Wang X; Wang B; Chang M; Muhammad I ISA Trans; 2020 Mar; 98():471-482. PubMed ID: 31492470 [TBL] [Abstract][Full Text] [Related]
5. Remaining Useful Life Prediction Based on Adaptive SHRINKAGE Processing and Temporal Convolutional Network. Wang H; Yang J; Shi L; Wang R Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501790 [TBL] [Abstract][Full Text] [Related]
6. Hybrid Degradation Equipment Remaining Useful Life Prediction Oriented Parallel Simulation considering Model Soft Switch. Ge C; Zhu Y; Di Y Comput Intell Neurosci; 2019; 2019():9179870. PubMed ID: 30992700 [TBL] [Abstract][Full Text] [Related]
7. A Cotraining-Based Semisupervised Approach for Remaining-Useful-Life Prediction of Bearings. Yan X; Xia X; Wang L; Zhang Z Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298116 [TBL] [Abstract][Full Text] [Related]
8. A novel based-performance degradation indicator RUL prediction model and its application in rolling bearing. Yang C; Ma J; Wang X; Li X; Li Z; Luo T ISA Trans; 2022 Feb; 121():349-364. PubMed ID: 33845998 [TBL] [Abstract][Full Text] [Related]
9. Long Short-Term Memory Neural Network with Transfer Learning and Ensemble Learning for Remaining Useful Life Prediction. Wang L; Liu H; Pan Z; Fan D; Zhou C; Wang Z Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957301 [TBL] [Abstract][Full Text] [Related]
10. Robustness testing framework for RUL prediction Deep LSTM networks. Sayah M; Guebli D; Al Masry Z; Zerhouni N ISA Trans; 2021 Jul; 113():28-38. PubMed ID: 32646591 [TBL] [Abstract][Full Text] [Related]
11. Remaining Useful Life Prediction of Rolling Bearings Based on Multi-scale Permutation Entropy and ISSA-LSTM. Wang H; Zhang X; Ren M; Xu T; Lu C; Zhao Z Entropy (Basel); 2023 Oct; 25(11):. PubMed ID: 37998169 [TBL] [Abstract][Full Text] [Related]
12. Anomaly-informed remaining useful life estimation (AIRULE) of bearing machinery using deep learning framework. Kamat P; Kumar S; Patil S; Kotecha K MethodsX; 2024 Jun; 12():102555. PubMed ID: 38292312 [TBL] [Abstract][Full Text] [Related]
13. Remaining Useful Life Prediction Using Dual-Channel LSTM with Time Feature and Its Difference. Peng C; Wu J; Wang Q; Gui W; Tang Z Entropy (Basel); 2022 Dec; 24(12):. PubMed ID: 36554221 [TBL] [Abstract][Full Text] [Related]
14. A Novel Method for Remaining Useful Life Prediction of Roller Bearings Involving the Discrepancy and Similarity of Degradation Trajectories. Luo H; Bo L; Liu X; Zhang H Comput Intell Neurosci; 2021; 2021():2500997. PubMed ID: 34899887 [TBL] [Abstract][Full Text] [Related]
15. Deep learning-based anomaly-onset aware remaining useful life estimation of bearings. Kamat PV; Sugandhi R; Kumar S PeerJ Comput Sci; 2021; 7():e795. PubMed ID: 34909464 [TBL] [Abstract][Full Text] [Related]
16. Application of Residual Structure Time Convolutional Network Based on Attention Mechanism in Remaining Useful Life Interval Prediction of Bearings. Zhang C; Zeng M; Fan J; Li X Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39000911 [TBL] [Abstract][Full Text] [Related]
17. A Remaining Useful Life Prognosis of Turbofan Engine Using Temporal and Spatial Feature Fusion. Peng C; Chen Y; Chen Q; Tang Z; Li L; Gui W Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33435633 [TBL] [Abstract][Full Text] [Related]
18. Method for remaining useful life prediction of rolling bearings based on deep reinforcement learning. Wang Y; Li Y; Lu H; Wang D Rev Sci Instrum; 2024 Sep; 95(9):. PubMed ID: 39283188 [TBL] [Abstract][Full Text] [Related]
19. Data-Driven Method for Predicting Remaining Useful Life of Bearing Based on Bayesian Theory. Gao T; Li Y; Huang X; Wang C Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33383918 [TBL] [Abstract][Full Text] [Related]
20. The Remaining Useful Life Prediction Method of a Hydraulic Pump under Unknown Degradation Model with Limited Data. Wu F; Tang J; Jiang Z; Sun Y; Chen Z; Guo B Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447779 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]