These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35746361)

  • 1. Modulation Spectral Signal Representation for Quality Measurement and Enhancement of Wearable Device Data: A Technical Note.
    Tiwari A; Cassani R; Kshirsagar S; Tobon DP; Zhu Y; Falk TH
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive Spectro-Temporal Filtering for Electrocardiogram Signal Enhancement.
    Tobon DP; Falk TH
    IEEE J Biomed Health Inform; 2018 Mar; 22(2):421-428. PubMed ID: 27959833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FLIRT: A feature generation toolkit for wearable data.
    Föll S; Maritsch M; Spinola F; Mishra V; Barata F; Kowatsch T; Fleisch E; Wortmann F
    Comput Methods Programs Biomed; 2021 Nov; 212():106461. PubMed ID: 34736174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectro-Temporal Electrocardiogram Analysis for Noise-Robust Heart Rate and Heart Rate Variability Measurement.
    Tobon DP; Jayaraman S; Falk TH
    IEEE J Transl Eng Health Med; 2017; 5():1900611. PubMed ID: 29255653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SPARE: A Spectral Peak Recovery Algorithm for PPG Signals Pulsewave Reconstruction in Multimodal Wearable Devices.
    Masinelli G; Dell'Agnola F; Valdés AA; Atienza D
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reference signal less Fourier analysis based motion artifact removal algorithm for wearable photoplethysmography devices to estimate heart rate during physical exercises.
    Pankaj ; Kumar A; Komaragiri R; Kumar M
    Comput Biol Med; 2022 Feb; 141():105081. PubMed ID: 34952340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signal quality and patient experience with wearable devices for epilepsy management.
    Nasseri M; Nurse E; Glasstetter M; Böttcher S; Gregg NM; Laks Nandakumar A; Joseph B; Pal Attia T; Viana PF; Bruno E; Biondi A; Cook M; Worrell GA; Schulze-Bonhage A; Dümpelmann M; Freestone DR; Richardson MP; Brinkmann BH
    Epilepsia; 2020 Nov; 61 Suppl 1():S25-S35. PubMed ID: 32497269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Wearable Pulse Oximeter With Wireless Communication and Motion Artifact Tailoring for Continuous Use.
    Chacon PJ; Limeng Pu ; da Costa TH; Young-Ho Shin ; Ghomian T; Shamkhalichenar H; Hsiao-Chun Wu ; Irving BA; Jin-Woo Choi
    IEEE Trans Biomed Eng; 2019 Jun; 66(6):1505-1513. PubMed ID: 30307850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Neural Network Architecture Search for Wearable Heart Rate Estimations.
    Ray D; Collins T; Ponnapalli P
    Stud Health Technol Inform; 2021 May; 281():1106-1107. PubMed ID: 34042859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multichannel ECG recording from waist using textile sensors.
    Alizadeh Meghrazi M; Tian Y; Mahnam A; Bhattachan P; Eskandarian L; Taghizadeh Kakhki S; Popovic MR; Lankarany M
    Biomed Eng Online; 2020 Jun; 19(1):48. PubMed ID: 32546233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust Heart Rate Monitoring for Quasi-Periodic Motions by Wrist-Type PPG Signals.
    He W; Ye Y; Lu L; Cheng Y; Li Y; Wang Z
    IEEE J Biomed Health Inform; 2020 Mar; 24(3):636-648. PubMed ID: 31021779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ECG performance in simultaneous recordings of five wearable devices using a new morphological noise-to-signal index and Smith-Waterman-based RR interval comparisons.
    Bläsing D; Buder A; Reiser JE; Nisser M; Derlien S; Vollmer M
    PLoS One; 2022; 17(10):e0274994. PubMed ID: 36197850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wearable Hardware Design for the Internet of Medical Things (IoMT).
    Qureshi F; Krishnan S
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30405026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward the Development of a Wearable Optical Respiratory Sensor for Real-Time Use.
    Chavez-Gaxiola A; Fisher Z; La Belle JT
    Crit Rev Biomed Eng; 2019; 47(2):131-139. PubMed ID: 31679241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distance-Based Detection of Cough, Wheeze, and Breath Sounds on Wearable Devices.
    Xue B; Shi W; Chotirmall SH; Koh VCA; Ang YY; Tan RX; Ser W
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent developments in sensors for wearable device applications.
    Cheng Y; Wang K; Xu H; Li T; Jin Q; Cui D
    Anal Bioanal Chem; 2021 Oct; 413(24):6037-6057. PubMed ID: 34389877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MS-QI: A Modulation Spectrum-Based ECG Quality Index for Telehealth Applications.
    Tobon V DP; Falk TH; Maier M
    IEEE Trans Biomed Eng; 2016 Aug; 63(8):1613-22. PubMed ID: 25203983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particle Filtering and Sensor Fusion for Robust Heart Rate Monitoring Using Wearable Sensors.
    Nathan V; Jafari R
    IEEE J Biomed Health Inform; 2018 Nov; 22(6):1834-1846. PubMed ID: 29990023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity and Adjustment Model of Electrocardiographic Signal Distortion Based on the Electrodes' Location and Motion Artifacts Reduction for Wearable Monitoring Applications.
    Castaño FA; Hernández AM
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel acquisition platform for long-term breathing frequency monitoring based on inertial measurement units.
    Cesareo A; Biffi E; Cuesta-Frau D; D'Angelo MG; Aliverti A
    Med Biol Eng Comput; 2020 Apr; 58(4):785-804. PubMed ID: 32002753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.