These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 35746401)

  • 1. Optimization and Evaluation of Sensor Angles for Precise Assessment of Architectural Traits in Peach Trees.
    Raman MG; Carlos EF; Sankaran S
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mobile LiDAR Scanning System Combined with Canopy Morphology Extracting Methods for Tree Crown Parameters Evaluation in Orchards.
    Wang K; Zhou J; Zhang W; Zhang B
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33419182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Canopy Information Measurement Method for Modern Standardized Apple Orchards Based on UAV Multimodal Information.
    Sun G; Wang X; Yang H; Zhang X
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32466120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of High-Resolution Multispectral UAVs to Calculate Projected Ground Area in
    Altieri G; Maffia A; Pastore V; Amato M; Celano G
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated extraction of
    Ji Y; Yan E; Yin X; Song Y; Wei W; Mo D
    Front Plant Sci; 2022; 13():958940. PubMed ID: 36035664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of maize plant height and leaf area index dynamics using an unmanned aerial vehicle with oblique and nadir photography.
    Che Y; Wang Q; Xie Z; Zhou L; Li S; Hui F; Wang X; Li B; Ma Y
    Ann Bot; 2020 Sep; 126(4):765-773. PubMed ID: 32432702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying pruning impacts on olive tree architecture and annual canopy growth by using UAV-based 3D modelling.
    Jiménez-Brenes FM; López-Granados F; de Castro AI; Torres-Sánchez J; Serrano N; Peña JM
    Plant Methods; 2017; 13():55. PubMed ID: 28694843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing Nadir and Oblique Thermal Imagery in UAV-Based 3D Crop Water Stress Index Applications for Precision Viticulture with LiDAR Validation.
    Buunk T; Vélez S; Ariza-Sentís M; Valente J
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locating chimpanzee nests and identifying fruiting trees with an unmanned aerial vehicle.
    van Andel AC; Wich SA; Boesch C; Koh LP; Robbins MM; Kelly J; Kuehl HS
    Am J Primatol; 2015 Oct; 77(10):1122-34. PubMed ID: 26179423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Lidar Point Cloud Based Procedure for Vertical Canopy Structure Analysis And 3D Single Tree Modelling in Forest.
    Wang Y; Weinacker H; Koch B
    Sensors (Basel); 2008 Jun; 8(6):3938-3951. PubMed ID: 27879916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comparative Analysis of UAV Photogrammetric Software Performance for Forest 3D Modeling: A Case Study Using AgiSoft Photoscan, PIX4DMapper, and DJI Terra.
    Jarahizadeh S; Salehi B
    Sensors (Basel); 2024 Jan; 24(1):. PubMed ID: 38203148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Throughput System for the Early Quantification of Major Architectural Traits in Olive Breeding Trials Using UAV Images and OBIA Techniques.
    de Castro AI; Rallo P; Suárez MP; Torres-Sánchez J; Casanova L; Jiménez-Brenes FM; Morales-Sillero A; Jiménez MR; López-Granados F
    Front Plant Sci; 2019; 10():1472. PubMed ID: 31803210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Individualization of
    Cabrera-Ariza AM; Lara-Gómez MA; Santelices-Moya RE; Meroño de Larriva JE; Mesas-Carrascosa FJ
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proposing UGV and UAV Systems for 3D Mapping of Orchard Environments.
    Tagarakis AC; Filippou E; Kalaitzidis D; Benos L; Busato P; Bochtis D
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of peach tree crown by using high-resolution images from an unmanned aerial vehicle.
    Mu Y; Fujii Y; Takata D; Zheng B; Noshita K; Honda K; Ninomiya S; Guo W
    Hortic Res; 2018; 5():74. PubMed ID: 30564372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution imagery acquired from an unmanned platform to estimate biophysical and geometrical parameters of olive trees under different irrigation regimes.
    Caruso G; Zarco-Tejada PJ; González-Dugo V; Moriondo M; Tozzini L; Palai G; Rallo G; Hornero A; Primicerio J; Gucci R
    PLoS One; 2019; 14(1):e0210804. PubMed ID: 30668591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system.
    Lu N; Zhou J; Han Z; Li D; Cao Q; Yao X; Tian Y; Zhu Y; Cao W; Cheng T
    Plant Methods; 2019; 15():17. PubMed ID: 30828356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology.
    Torres-Sánchez J; López-Granados F; Serrano N; Arquero O; Peña JM
    PLoS One; 2015; 10(6):e0130479. PubMed ID: 26107174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic instance segmentation of orchard canopy in unmanned aerial vehicle imagery using deep learning.
    Zhang W; Chen X; Qi J; Yang S
    Front Plant Sci; 2022; 13():1041791. PubMed ID: 36531373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of flight velocity on droplet deposition and drift of combined pesticides sprayed using an unmanned aerial vehicle sprayer in a peach orchard.
    Li L; Hu Z; Liu Q; Yi T; Han P; Zhang R; Pan L
    Front Plant Sci; 2022; 13():981494. PubMed ID: 36247584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.