These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35746432)

  • 1. Estimation of Knee Extension Force Using Mechanomyography Signals Based on GRA and ICS-SVR.
    Li Z; Gao L; Lu W; Wang D; Cao H; Zhang G
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Torque Estimation of Knee Flexion and Extension Movements From a Mechanomyogram of the Femoral Muscle.
    Hondo N; Tsuji T
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1120-1126. PubMed ID: 35452389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SVR modelling of mechanomyographic signals predicts neuromuscular stimulation-evoked knee torque in paralyzed quadriceps muscles undergoing knee extension exercise.
    Ibitoye MO; Hamzaid NA; Abdul Wahab AK; Hasnan N; Olatunji SO; Davis GM
    Comput Biol Med; 2020 Feb; 117():103614. PubMed ID: 32072969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of Electrically-Evoked Knee Torque from Mechanomyography Using Support Vector Regression.
    Ibitoye MO; Hamzaid NA; Abdul Wahab AK; Hasnan N; Olatunji SO; Davis GM
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27447638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time continuous recognition of knee motion using multi-channel mechanomyography signals detected on clothes.
    Wu H; Wang D; Huang Q; Gao L
    J Electromyogr Kinesiol; 2018 Feb; 38():94-102. PubMed ID: 29182965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle force estimation from lower limb EMG signals using novel optimised machine learning techniques.
    Mokri C; Bamdad M; Abolghasemi V
    Med Biol Eng Comput; 2022 Mar; 60(3):683-699. PubMed ID: 35029815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HD-sEMG-based research on activation heterogeneity of skeletal muscles and the joint force estimation during elbow flexion.
    Zhang C; Chen X; Cao S; Zhang X; Chen X
    J Neural Eng; 2018 Oct; 15(5):056027. PubMed ID: 30010094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A CNN-SVM combined model for pattern recognition of knee motion using mechanomyography signals.
    Wu H; Huang Q; Wang D; Gao L
    J Electromyogr Kinesiol; 2018 Oct; 42():136-142. PubMed ID: 30077088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of elbow flexion force during isometric muscle contraction from mechanomyography and electromyography.
    Youn W; Kim J
    Med Biol Eng Comput; 2010 Nov; 48(11):1149-57. PubMed ID: 20524072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint mechanical properties estimation with a novel EMG-based knee rehabilitation robot: A machine learning approach.
    Bamdad M; Mokri C; Abolghasemi V
    Med Eng Phys; 2022 Dec; 110():103933. PubMed ID: 36509665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EMG-driven forward-dynamic estimation of muscle force and joint moment about multiple degrees of freedom in the human lower extremity.
    Sartori M; Reggiani M; Farina D; Lloyd DG
    PLoS One; 2012; 7(12):e52618. PubMed ID: 23300725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel HD-sEMG Preprocessing Method Integrating Muscle Activation Heterogeneity Analysis and Kurtosis-Guided Filtering for High-Accuracy Joint Force Estimation.
    Zhang C; Chen X; Cao S; Zhang X; Chen X
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1920-1930. PubMed ID: 31398123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of knee joint movement using single-channel sEMG signals with a feature-guided convolutional neural network.
    Zhang S; Lu J; Huo W; Yu N; Han J
    Front Neurorobot; 2022; 16():978014. PubMed ID: 36386394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of elbow spasticity with surface electromyography and mechanomyography based on support vector machine.
    Hui Wang ; Lei Wang ; Yun Xiang ; Ning Zhao ; Xiangxin Li ; Shixiong Chen ; Chuang Lin ; Guanglin Li
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3860-3863. PubMed ID: 29060740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters.
    Raj R; Sivanandan KS
    J Back Musculoskelet Rehabil; 2017; 30(3):515-525. PubMed ID: 27858692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calibration of EMG to force for knee muscles is applicable with submaximal voluntary contractions.
    Doorenbosch CA; Joosten A; Harlaar J
    J Electromyogr Kinesiol; 2005 Aug; 15(4):429-35. PubMed ID: 15811613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation on the Contributions of Different Muscles to the Generated Force based on HD-sEMG and DBN
    Hu R; Chen X; Cao S; Zhang X; Chen X
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2645-2648. PubMed ID: 31946439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A two-step EMG-and-optimization process to estimate muscle force during dynamic movement.
    Amarantini D; Rao G; Berton E
    J Biomech; 2010 Jun; 43(9):1827-30. PubMed ID: 20206935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanomyogram from the different heads of the quadriceps muscle during incremental knee extension.
    Shinohara M; Kouzaki M; Yoshihisa T; Fukunaga T
    Eur J Appl Physiol Occup Physiol; 1998 Sep; 78(4):289-95. PubMed ID: 9754967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indices reflecting muscle contraction performance during exercise based on a combined electromyography and mechanomyography approach.
    Fukuhara S; Kawashima T; Oka H
    Sci Rep; 2021 Oct; 11(1):21208. PubMed ID: 34707172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.