These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35746432)

  • 21. Neural Network-Based Muscle Torque Estimation Using Mechanomyography During Electrically-Evoked Knee Extension and Standing in Spinal Cord Injury.
    Dzulkifli MA; Hamzaid NA; Davis GM; Hasnan N
    Front Neurorobot; 2018; 12():50. PubMed ID: 30147650
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hybrid fusion of linear, non-linear and spectral models for the dynamic modeling of sEMG and skeletal muscle force: an application to upper extremity amputation.
    Potluri C; Anugolu M; Schoen MP; Subbaram Naidu D; Urfer A; Chiu S
    Comput Biol Med; 2013 Nov; 43(11):1815-26. PubMed ID: 24209927
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface electromyography based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms.
    Karthick PA; Ghosh DM; Ramakrishnan S
    Comput Methods Programs Biomed; 2018 Feb; 154():45-56. PubMed ID: 29249346
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Myoelectric control algorithm for robot-assisted therapy: a hardware-in-the-loop simulation study.
    Yepes JC; Portela MA; Saldarriaga ÁJ; Pérez VZ; Betancur MJ
    Biomed Eng Online; 2019 Jan; 18(1):3. PubMed ID: 30606192
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel approach to automatically quantify the level of coincident activity between EMG and MMG signals.
    Plewa K; Samadani A; Orlandi S; Chau T
    J Electromyogr Kinesiol; 2018 Aug; 41():34-40. PubMed ID: 29738937
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A preliminary study of classification of upper limb motions and forces based on mechanomyography.
    Zhang Y; Xia C
    Med Eng Phys; 2020 Jul; 81():97-104. PubMed ID: 32507673
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Muscle endurance time estimation during isometric training using electromyogram and supervised learning.
    Mehra P; Cheung VCK; Tong RKY
    J Electromyogr Kinesiol; 2020 Feb; 50():102376. PubMed ID: 31775110
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Asymmetry of force fluctuation in knee extension.
    Oshita K; Yano S
    Int J Sports Med; 2010 May; 31(5):342-6. PubMed ID: 20309786
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lower Limb Motion Estimation Using Ultrasound Imaging: A Framework for Assistive Device Control.
    Jahanandish MH; Fey NP; Hoyt K
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2505-2514. PubMed ID: 30629522
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sonomyographic responses during voluntary isometric ramp contraction of the human rectus femoris muscle.
    Chen X; Zheng YP; Guo JY; Zhu Z; Chan SC; Zhang Z
    Eur J Appl Physiol; 2012 Jul; 112(7):2603-14. PubMed ID: 22081124
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SVM for estimation of wrist angle from sonomyography and SEMG signals.
    Shi J; Zheng Y; Yan Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4806-9. PubMed ID: 18003081
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Real-time upper limb motion estimation from surface electromyography and joint angular velocities using an artificial neural network for human-machine cooperation.
    Kwon S; Kim J
    IEEE Trans Inf Technol Biomed; 2011 Jul; 15(4):522-30. PubMed ID: 21558060
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Model-based estimation of knee stiffness.
    Pfeifer S; Vallery H; Hardegger M; Riener R; Perreault EJ
    IEEE Trans Biomed Eng; 2012 Sep; 59(9):2604-12. PubMed ID: 22801482
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Knee motion pattern classification from trunk muscle based on sEMG signals.
    Lopez-Delis A; Delisle-Rodriguez D; Villa-Parra AC; Bastos-Filho T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2604-7. PubMed ID: 26736825
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A practical strategy for sEMG-based knee joint moment estimation during gait and its validation in individuals with cerebral palsy.
    Kwon S; Park HS; Stanley CJ; Kim J; Kim J; Damiano DL
    IEEE Trans Biomed Eng; 2012 May; 59(5):1480-7. PubMed ID: 22410952
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wearable MMG-Plus-One Armband: Evaluation of Normal Force on Mechanomyography (MMG) to Enhance Human-Machine Interfacing.
    Castillo CSM; Wilson S; Vaidyanathan R; Atashzar SF
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():196-205. PubMed ID: 33290226
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanomyography is more sensitive than EMG in detecting age-related sarcopenia.
    Tian SL; Liu Y; Li L; Fu WJ; Peng CH
    J Biomech; 2010 Feb; 43(3):551-6. PubMed ID: 19945705
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of muscle fatigue as assessed by electromyography and mechanomyography during continuous and intermittent low-force contractions: effects of the feedback mode.
    Madeleine P; Jørgensen LV; Søgaard K; Arendt-Nielsen L; Sjøgaard G
    Eur J Appl Physiol; 2002 May; 87(1):28-37. PubMed ID: 12012073
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uncovering patterns of forearm muscle activity using multi-channel mechanomyography.
    Alves N; Chau T
    J Electromyogr Kinesiol; 2010 Oct; 20(5):777-86. PubMed ID: 19854064
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Index for estimation of muscle force from mechanomyography based on the Lempel-Ziv algorithm.
    Sarlabous L; Torres A; Fiz JA; Morera J; Jané R
    J Electromyogr Kinesiol; 2013 Jun; 23(3):548-57. PubMed ID: 23428331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.