BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35746966)

  • 1. Remembering how to run: A descriptive wheel run analysis in CF1 male and female mice.
    Santos MJ; Picco S; Fernández R; Pedreira ME; Boccia M; Klappenbach M; Krawczyk MC
    IBRO Neurosci Rep; 2022 Jun; 12():333-341. PubMed ID: 35746966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization of the wheel running phenotype in mice.
    Bowen RS; Cates BE; Combs EB; Dillard BM; Epting JT; Foster BR; Patterson SV; Spivey TP
    Physiol Behav; 2016 Mar; 155():149-56. PubMed ID: 26687894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circulating levels of endocannabinoids respond acutely to voluntary exercise, are altered in mice selectively bred for high voluntary wheel running, and differ between the sexes.
    Thompson Z; Argueta D; Garland T; DiPatrizio N
    Physiol Behav; 2017 Mar; 170():141-150. PubMed ID: 28017680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using wheel availability to shape running behavior of the rat towards improved behavioral and neurobiological outcomes.
    Basso JC; Morrell JI
    J Neurosci Methods; 2017 Oct; 290():13-23. PubMed ID: 28720249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of sex on activity in voluntary wheel running, forced treadmill running, and open field testing.
    Janowski AJ; Berardi G; Hayashi K; Plumb AN; Lesnak JB; Khataei T; Martin B; Benson CJ; Sluka KA
    Res Sq; 2024 May; ():. PubMed ID: 38798501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caffeine stimulates voluntary wheel running in mice without increasing aerobic capacity.
    Claghorn GC; Thompson Z; Wi K; Van L; Garland T
    Physiol Behav; 2017 Mar; 170():133-140. PubMed ID: 28039074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrocardiograms of mice selectively bred for high levels of voluntary exercise: Effects of short-term exercise training and the mini-muscle phenotype.
    Kay JC; Claghorn GC; Thompson Z; Hampton TG; Garland T
    Physiol Behav; 2019 Feb; 199():322-332. PubMed ID: 30508549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of pre-pubertal sex differences in wheel running and social behavior in three mouse strains.
    Gordon EA; Corbitt C
    J Ethol; 2015 Aug; 33(3):177-187. PubMed ID: 26316671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reinventing the wheel: comparison of two wheel cage styles for assessing mouse voluntary running activity.
    Seward T; Harfmann BD; Esser KA; Schroder EA
    J Appl Physiol (1985); 2018 Apr; 124(4):923-929. PubMed ID: 29357507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Voluntary Wheel-Running Types on Hippocampal Neurogenesis and Spatial Cognition in Middle-Aged Mice.
    Huang YQ; Wu C; He XF; Wu D; He X; Liang FY; Dai GY; Pei Z; Xu GQ; Lan Y
    Front Cell Neurosci; 2018; 12():177. PubMed ID: 29997480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preference for Western diet coadapts in High Runner mice and affects voluntary exercise and spontaneous physical activity in a genotype-dependent manner.
    Acosta W; Meek TH; Schutz H; Dlugosz EM; Garland T
    Behav Processes; 2017 Feb; 135():56-65. PubMed ID: 27908664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mouse genetic differences in voluntary wheel running, adult hippocampal neurogenesis and learning on the multi-strain-adapted plus water maze.
    Merritt JR; Rhodes JS
    Behav Brain Res; 2015 Mar; 280():62-71. PubMed ID: 25435316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voluntary resistance running wheel activity pattern and skeletal muscle growth in rats.
    Legerlotz K; Elliott B; Guillemin B; Smith HK
    Exp Physiol; 2008 Jun; 93(6):754-62. PubMed ID: 18281393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sex-related differences in the wheel-running activity of mice decline with increasing age.
    Bartling B; Al-Robaiy S; Lehnich H; Binder L; Hiebl B; Simm A
    Exp Gerontol; 2017 Jan; 87(Pt B):139-147. PubMed ID: 27108181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voluntary wheel running: patterns and physiological effects in mice.
    Manzanares G; Brito-da-Silva G; Gandra PG
    Braz J Med Biol Res; 2018 Dec; 52(1):e7830. PubMed ID: 30539969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voluntary Wheel Running in Mice.
    Goh J; Ladiges W
    Curr Protoc Mouse Biol; 2015 Dec; 5(4):283-290. PubMed ID: 26629772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voluntary wheel running in dystrophin-deficient (mdx) mice: Relationships between exercise parameters and exacerbation of the dystrophic phenotype.
    Smythe GM; White JD
    PLoS Curr; 2011 Dec; 3():RRN1295. PubMed ID: 22457847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voluntary wheel running attenuates ethanol withdrawal-induced increases in seizure susceptibility in male and female rats.
    Devaud LL; Walls SA; McCulley WD; Rosenwasser AM
    Pharmacol Biochem Behav; 2012 Nov; 103(1):18-25. PubMed ID: 22871538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endurance capacity of mice selectively bred for high voluntary wheel running.
    Meek TH; Lonquich BP; Hannon RM; Garland T
    J Exp Biol; 2009 Sep; 212(18):2908-17. PubMed ID: 19717672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exercise training effects on hypoxic and hypercapnic ventilatory responses in mice selected for increased voluntary wheel running.
    Kelly SA; Rezende EL; Chappell MA; Gomes FR; Kolb EM; Malisch JL; Rhodes JS; Mitchell GS; Garland T
    Exp Physiol; 2014 Feb; 99(2):403-13. PubMed ID: 24142456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.