BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 35746966)

  • 21. Mice from lines selectively bred for high voluntary wheel running exhibit lower blood pressure during withdrawal from wheel access.
    Kolb EM; Kelly SA; Garland T
    Physiol Behav; 2013 Mar; 112-113():49-55. PubMed ID: 23458632
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel instrumented multipeg running wheel system, Step-Wheel, for monitoring and controlling complex sequential stepping in mice.
    Kitsukawa T; Nagata M; Yanagihara D; Tomioka R; Utsumi H; Kubota Y; Yagi T; Graybiel AM; Yamamori T
    J Neurophysiol; 2011 Jul; 106(1):479-87. PubMed ID: 21525375
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of size, sex, and voluntary running speeds on costs of locomotion in lines of laboratory mice selectively bred for high wheel-running activity.
    Rezende EL; Kelly SA; Gomes FR; Chappell MA; Garland T
    Physiol Biochem Zool; 2006; 79(1):83-99. PubMed ID: 16380930
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic influence on daily wheel running activity level.
    Lightfoot JT; Turner MJ; Daves M; Vordermark A; Kleeberger SR
    Physiol Genomics; 2004 Nov; 19(3):270-6. PubMed ID: 15383638
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prolonged voluntary wheel-running stimulates neural precursors in the hippocampus and forebrain of adult CD1 mice.
    Bednarczyk MR; Aumont A; Décary S; Bergeron R; Fernandes KJ
    Hippocampus; 2009 Oct; 19(10):913-27. PubMed ID: 19405143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of chronic stress on running wheel activity in mice.
    DeVallance E; Riggs D; Jackson B; Parkulo T; Zaslau S; Chantler PD; Olfert IM; Bryner RW
    PLoS One; 2017; 12(9):e0184829. PubMed ID: 28926614
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Restricted vs. unrestricted wheel running in mice: Effects on brain, behavior and endocannabinoids.
    Biedermann SV; Auer MK; Bindila L; Ende G; Lutz B; Weber-Fahr W; Gass P; Fuss J
    Horm Behav; 2016 Nov; 86():45-54. PubMed ID: 27664019
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Maternal exposure to Western diet affects adult body composition and voluntary wheel running in a genotype-specific manner in mice.
    Hiramatsu L; Kay JC; Thompson Z; Singleton JM; Claghorn GC; Albuquerque RL; Ho B; Ho B; Sanchez G; Garland T
    Physiol Behav; 2017 Oct; 179():235-245. PubMed ID: 28625550
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chronic Sciatic Neuropathy in Rat Reduces Voluntary Wheel-Running Activity With Concurrent Chronic Mechanical Allodynia.
    Whitehead RA; Lam NL; Sun MS; Sanchez J; Noor S; Vanderwall AG; Petersen TR; Martin HB; Milligan ED
    Anesth Analg; 2017 Jan; 124(1):346-355. PubMed ID: 27782944
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Selective Breeding, Voluntary Exercise, and Sex on Endocannabinoid Levels in the Mouse Small-Intestinal Epithelium.
    Schmill MP; Thompson Z; Argueta DA; DiPatrizio NV; Garland T
    Physiol Behav; 2022 Mar; 245():113675. PubMed ID: 34929258
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Maximal metabolic rates during voluntary exercise, forced exercise, and cold exposure in house mice selectively bred for high wheel-running.
    Rezende EL; Chappell MA; Gomes FR; Malisch JL; Garland T
    J Exp Biol; 2005 Jun; 208(Pt 12):2447-58. PubMed ID: 15939783
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of voluntary wheel running on 129/SvEvTac and C3H/Ibg alcohol consumption.
    Booher WC; Hoft NR; Ehringer MA
    Alcohol; 2019 Jun; 77():91-99. PubMed ID: 30616894
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hippocampal brain-derived neurotrophic factor but not neurotrophin-3 increases more in mice selected for increased voluntary wheel running.
    Johnson RA; Rhodes JS; Jeffrey SL; Garland T; Mitchell GS
    Neuroscience; 2003; 121(1):1-7. PubMed ID: 12946694
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Serotonin-mediated central fatigue underlies increased endurance capacity in mice from lines selectively bred for high voluntary wheel running.
    Claghorn GC; Fonseca IAT; Thompson Z; Barber C; Garland T
    Physiol Behav; 2016 Jul; 161():145-154. PubMed ID: 27106566
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A reward increases running-wheel performance without changing cell proliferation, neuronal differentiation or cell death in the dentate gyrus of C57BL/6 mice.
    Klaus F; Hauser T; Slomianka L; Lipp HP; Amrein I
    Behav Brain Res; 2009 Dec; 204(1):175-81. PubMed ID: 19520122
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dose-dependent effectiveness of wheel running to attenuate cocaine-seeking: impact of sex and estrous cycle in rats.
    Peterson AB; Hivick DP; Lynch WJ
    Psychopharmacology (Berl); 2014 Jul; 231(13):2661-70. PubMed ID: 24464528
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Voluntary wheel running enhances cell proliferation and expression levels of BDNF, IGF1 and WNT4 in dentate gyrus of adult mice].
    Yu JL; Ma L; Ma L; Tao YZ
    Sheng Li Xue Bao; 2014 Oct; 66(5):559-68. PubMed ID: 25332001
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Voluntary Wheel Running Improves Spatial Learning Memory by Suppressing Inflammation and Apoptosis via Inactivation of Nuclear Factor Kappa B in Brain Inflammation Rats.
    Ko YJ; Ko IG
    Int Neurourol J; 2020 Nov; 24(Suppl 2):96-103. PubMed ID: 33271006
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CB1 receptor deficiency decreases wheel-running activity: consequences on emotional behaviours and hippocampal neurogenesis.
    Dubreucq S; Koehl M; Abrous DN; Marsicano G; Chaouloff F
    Exp Neurol; 2010 Jul; 224(1):106-13. PubMed ID: 20138171
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of intrinsic aerobic capacity and ovariectomy on voluntary wheel running and nucleus accumbens dopamine receptor gene expression.
    Park YM; Kanaley JA; Padilla J; Zidon T; Welly RJ; Will MJ; Britton SL; Koch LG; Ruegsegger GN; Booth FW; Thyfault JP; Vieira-Potter VJ
    Physiol Behav; 2016 Oct; 164(Pt A):383-9. PubMed ID: 27297873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.