These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 35747200)

  • 1. Hydride Transfer Mechanism of Enzymatic Sugar Nucleotide C2 Epimerization Probed with a Loose-Fit CDP-Glucose Substrate.
    Rapp C; Nidetzky B
    ACS Catal; 2022 Jun; 12(12):6816-6830. PubMed ID: 35747200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expanding the Enzyme Repertoire for Sugar Nucleotide Epimerization: The CDP-Tyvelose 2-Epimerase from
    Rapp C; van Overtveldt S; Beerens K; Weber H; Desmet T; Nidetzky B
    Appl Environ Microbiol; 2021 Mar; 87(4):. PubMed ID: 33277270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient-state and steady-state kinetic studies of the mechanism of NADH-dependent aldehyde reduction catalyzed by xylose reductase from the yeast Candida tenuis.
    Nidetzky B; Klimacek M; Mayr P
    Biochemistry; 2001 Aug; 40(34):10371-81. PubMed ID: 11513616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Examining the relative timing of hydrogen abstraction steps during NAD(+)-dependent oxidation of secondary alcohols catalyzed by long-chain D-mannitol dehydrogenase from Pseudomonas fluorescens using pH and kinetic isotope effects.
    Klimacek M; Nidetzky B
    Biochemistry; 2002 Aug; 41(31):10158-65. PubMed ID: 12146981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active site hydrophobic residues impact hydrogen tunneling differently in a thermophilic alcohol dehydrogenase at optimal versus nonoptimal temperatures.
    Nagel ZD; Meadows CW; Dong M; Bahnson BJ; Klinman JP
    Biochemistry; 2012 May; 51(20):4147-56. PubMed ID: 22568562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. H-tunneling in the multiple H-transfers of the catalytic cycle of morphinone reductase and in the reductive half-reaction of the homologous pentaerythritol tetranitrate reductase.
    Basran J; Harris RJ; Sutcliffe MJ; Scrutton NS
    J Biol Chem; 2003 Nov; 278(45):43973-82. PubMed ID: 12941965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acid-base catalysis by UDP-galactose 4-epimerase: correlations of kinetically measured acid dissociation constants with thermodynamic values for tyrosine 149.
    Berger E; Arabshahi A; Wei Y; Schilling JF; Frey PA
    Biochemistry; 2001 Jun; 40(22):6699-705. PubMed ID: 11380265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic characterization of UDP-glucuronic acid 4-epimerase.
    Borg AJE; Dennig A; Weber H; Nidetzky B
    FEBS J; 2021 Feb; 288(4):1163-1178. PubMed ID: 32645249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hydrogen bond network in the active site of Anabaena ferredoxin-NADP(+) reductase modulates its catalytic efficiency.
    Sánchez-Azqueta A; Herguedas B; Hurtado-Guerrero R; Hervás M; Navarro JA; Martínez-Júlvez M; Medina M
    Biochim Biophys Acta; 2014 Feb; 1837(2):251-63. PubMed ID: 24200908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibrationally enhanced hydrogen tunneling in the Escherichia coli thymidylate synthase catalyzed reaction.
    Agrawal N; Hong B; Mihai C; Kohen A
    Biochemistry; 2004 Feb; 43(7):1998-2006. PubMed ID: 14967040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydride reduction of NAD+ analogues by isopropyl alcohol: kinetics, deuterium isotope effects and mechanism.
    Lu Y; Qu F; Moore B; Endicott D; Kuester W
    J Org Chem; 2008 Jul; 73(13):4763-70. PubMed ID: 18543993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of the hydride reduction of an NAD(+) analogue by isopropyl alcohol in aqueous and acetonitrile solutions: solvent effects, deuterium isotope effects, and mechanism.
    Lu Y; Qu F; Zhao Y; Small AM; Bradshaw J; Moore B
    J Org Chem; 2009 Sep; 74(17):6503-10. PubMed ID: 19670893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An internal equilibrium preorganizes the enzyme-substrate complex for hydride tunneling in choline oxidase.
    Fan F; Gadda G
    Biochemistry; 2007 May; 46(21):6402-8. PubMed ID: 17472346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding Biological Hydrogen Transfer Through the Lens of Temperature Dependent Kinetic Isotope Effects.
    Klinman JP; Offenbacher AR
    Acc Chem Res; 2018 Sep; 51(9):1966-1974. PubMed ID: 30152685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction-path energetics and kinetics of the hydride transfer reaction catalyzed by dihydrofolate reductase.
    Garcia-Viloca M; Truhlar DG; Gao J
    Biochemistry; 2003 Nov; 42(46):13558-75. PubMed ID: 14622003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic reaction profile for NADH-dependent reduction of aromatic aldehydes by xylose reductase from Candida tenuis.
    Mayr P; Nidetzky B
    Biochem J; 2002 Sep; 366(Pt 3):889-99. PubMed ID: 12003638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A compelling experimental test of the hypothesis that enzymes have evolved to enhance quantum mechanical tunneling in hydrogen transfer reactions: the beta-neopentylcobalamin system combined with prior adocobalamin data.
    Doll KM; Finke RG
    Inorg Chem; 2003 Aug; 42(16):4849-56. PubMed ID: 12895106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant.
    Kratzer R; Kavanagh KL; Wilson DK; Nidetzky B
    Biochemistry; 2004 May; 43(17):4944-54. PubMed ID: 15109252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A stopped flow transient kinetic analysis of substrate binding and catalysis in Escherichia coli D-3-phosphoglycerate dehydrogenase.
    Burton RL; Hanes JW; Grant GA
    J Biol Chem; 2008 Oct; 283(44):29706-14. PubMed ID: 18776184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Replication of the Enzymatic Temperature Dependency of the Primary Hydride Kinetic Isotope Effects in Solution: Caused by the Protein-Controlled Rigidity of the Donor-Acceptor Centers?
    Lu Y; Wilhelm S; Bai M; Maness P; Ma L
    Biochemistry; 2019 Oct; 58(39):4035-4046. PubMed ID: 31478638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.