These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35747467)

  • 1. Theoretical Distribution of the Ammonia Binding Energy at Interstellar Icy Grains: A New Computational Framework.
    Tinacci L; Germain A; Pantaleone S; Ferrero S; Ceccarelli C; Ugliengo P
    ACS Earth Space Chem; 2022 Jun; 6(6):1514-1526. PubMed ID: 35747467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer Generated Realistic Interstellar Icy Grain Models: Physicochemical Properties and Interaction with NH
    Germain A; Tinacci L; Pantaleone S; Ceccarelli C; Ugliengo P
    ACS Earth Space Chem; 2022 May; 6(5):1286-1298. PubMed ID: 35620318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Floating in Space: How to Treat the Weak Interaction between CO Molecules in Interstellar Ices.
    Ferrari BC; Molpeceres G; Kästner J; Aikawa Y; van Hemert M; Meyer J; Lamberts T
    ACS Earth Space Chem; 2023 Jul; 7(7):1423-1432. PubMed ID: 37492630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of PAHs on interstellar ice viewed by classical molecular dynamics.
    Michoulier E; Noble JA; Simon A; Mascetti J; Toubin C
    Phys Chem Chem Phys; 2018 Mar; 20(13):8753-8764. PubMed ID: 29541718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the morphology of interstellar ice analogues after hydrogen atom exposure.
    Accolla M; Congiu E; Dulieu F; Manicò G; Chaabouni H; Matar E; Mokrane H; Lemaire JL; Pirronello V
    Phys Chem Chem Phys; 2011 May; 13(17):8037-45. PubMed ID: 21445409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ice in space: surface science investigations of the thermal desorption of model interstellar ices on dust grain analogue surfaces.
    Burke DJ; Brown WA
    Phys Chem Chem Phys; 2010 Jun; 12(23):5947-69. PubMed ID: 20520900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation and Transformation of Clathrate Hydrates under Interstellar Conditions.
    Ghosh J; Vishwakarma G; Kumar R; Pradeep T
    Acc Chem Res; 2023 Aug; 56(16):2241-2252. PubMed ID: 37531446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding energies of ethanol and ethylamine on interstellar water ices: synergy between theory and experiments.
    Perrero J; Vitorino J; Congiu E; Ugliengo P; Rimola A; Dulieu F
    Phys Chem Chem Phys; 2024 Jul; 26(26):18205-18222. PubMed ID: 38904093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum mechanical modeling of interstellar molecules on cosmic dusts: H
    Li F; Quan D; Zhang X; Li X; Esimbek J
    Front Chem; 2022; 10():1040703. PubMed ID: 36438871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gas-Phase vs. Grain-Surface Formation of Interstellar Complex Organic Molecules: A Comprehensive Quantum-Chemical Study.
    Martínez-Bachs B; Rimola A
    Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of D2 with H2O amorphous ice studied by temperature-programmed desorption experiments.
    Amiaud L; Fillion JH; Baouche S; Dulieu F; Momeni A; Lemaire JL
    J Chem Phys; 2006 Mar; 124(9):94702. PubMed ID: 16526867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum chemical protocols for modeling reactions and spectra in astrophysical ice analogs: the challenging case of the C⁺ + H₂O reaction in icy grain mantles.
    Woon DE
    Phys Chem Chem Phys; 2015 Nov; 17(43):28705-18. PubMed ID: 26445904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water formation through O2 + D pathway on cold silicate and amorphous water ice surfaces of interstellar interest.
    Chaabouni H; Minissale M; Manicò G; Congiu E; Noble JA; Baouche S; Accolla M; Lemaire JL; Pirronello V; Dulieu F
    J Chem Phys; 2012 Dec; 137(23):234706. PubMed ID: 23267497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First Detection of Interstellar S
    Fuente A; Goicoechea JR; Pety J; Le Gal R; Martín-Doménech R; Gratier P; Guzmán V; Roueff E; Loison JC; Muñoz Caro GM; Wakelam V; Gerin M; Riviere-Marichalar P; Vidal T
    Astrophys J Lett; 2017 Dec; 851():. PubMed ID: 29862006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of a diffusion-desorption rate equation model in astrochemistry.
    He J; Vidali G
    Faraday Discuss; 2014; 168():517-32. PubMed ID: 25302396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-energy electron-induced chemistry of condensed methanol: implications for the interstellar synthesis of prebiotic molecules.
    Boamah MD; Sullivan KK; Shulenberger KE; Soe CM; Jacob LM; Yhee FC; Atkinson KE; Boyer MC; Haines DR; Arumainayagam CR
    Faraday Discuss; 2014; 168():249-66. PubMed ID: 25302384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dust evolution, a global view: III. Core/mantle grains, organic nano-globules, comets and surface chemistry.
    Jones AP
    R Soc Open Sci; 2016 Dec; 3(12):160224. PubMed ID: 28083090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of adsorbed CO₂ on water ice at low temperatures.
    Karssemeijer LJ; de Wijs GA; Cuppen HM
    Phys Chem Chem Phys; 2014 Aug; 16(29):15630-9. PubMed ID: 24955794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photodesorption from low-temperature water ice in interstellar and circumsolar grains.
    Westley MS; Baragiola RA; Johnson RE; Baratta GA
    Nature; 1995 Feb; 373(6513):405-7. PubMed ID: 7830792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycine formation in CO
    Esmaili S; Bass AD; Cloutier P; Sanche L; Huels MA
    J Chem Phys; 2018 Apr; 148(16):164702. PubMed ID: 29716196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.