These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 35747496)

  • 1. Gene Editing and Genetic Control of Hemipteran Pests: Progress, Challenges and Perspectives.
    Pacheco ID; Walling LL; Atkinson PW
    Front Bioeng Biotechnol; 2022; 10():900785. PubMed ID: 35747496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxins for transgenic resistance to hemipteran pests.
    Chougule NP; Bonning BC
    Toxins (Basel); 2012 Jun; 4(6):405-29. PubMed ID: 22822455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9-mediated knockout of two eye pigmentation genes in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae).
    Xue WH; Xu N; Yuan XB; Chen HH; Zhang JL; Fu SJ; Zhang CX; Xu HJ
    Insect Biochem Mol Biol; 2018 Feb; 93():19-26. PubMed ID: 29241845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The challenge of RNAi-mediated control of hemipterans.
    Christiaens O; Smagghe G
    Curr Opin Insect Sci; 2014 Dec; 6():15-21. PubMed ID: 32846663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotechnological interventions for the sustainable management of a global pest, whitefly (Bemisia tabaci).
    Suhag A; Yadav H; Chaudhary D; Subramanian S; Jaiwal R; Jaiwal PK
    Insect Sci; 2021 Oct; 28(5):1228-1252. PubMed ID: 32696581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cry64Ba and Cry64Ca, Two ETX/MTX2-Type Bacillus thuringiensis Insecticidal Proteins Active against Hemipteran Pests.
    Liu Y; Wang Y; Shu C; Lin K; Song F; Bravo A; Soberón M; Zhang J
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacteria-derived pesticidal proteins active against hemipteran pests.
    Mishra R; Arora AK; Jiménez J; Dos Santos Tavares C; Banerjee R; Panneerselvam S; Bonning BC
    J Invertebr Pathol; 2022 Nov; 195():107834. PubMed ID: 36244507
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Hernandez J; Pick L; Reding K
    Evodevo; 2020; 11():9. PubMed ID: 32337018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting detoxification genes by phloem-mediated RNAi: A new approach for controlling phloem-feeding insect pests.
    Eakteiman G; Moses-Koch R; Moshitzky P; Mestre-Rincon N; Vassão DG; Luck K; Sertchook R; Malka O; Morin S
    Insect Biochem Mol Biol; 2018 Sep; 100():10-21. PubMed ID: 29859812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional reconstruction of a whole insect reveals its phloem sap-sucking mechanism at nano-resolution.
    Wang XQ; Guo JS; Li DT; Yu Y; Hagoort J; Moussian B; Zhang CX
    Elife; 2021 Feb; 10():. PubMed ID: 33620311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using CRISPR/Cas9 genome modification to understand the genetic basis of insecticide resistance: Drosophila and beyond.
    Douris V; Denecke S; Van Leeuwen T; Bass C; Nauen R; Vontas J
    Pestic Biochem Physiol; 2020 Jul; 167():104595. PubMed ID: 32527434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oligonucleotide Insecticides for Green Agriculture: Regulatory Role of Contact DNA in Plant-Insect Interactions.
    Oberemok VV; Useinov RZ; Skorokhod OA; Gal'chinsky NV; Novikov IA; Makalish TP; Yatskova EV; Sharmagiy AK; Golovkin IO; Gninenko YI; Puzanova YV; Andreeva OA; Alieva EE; Eken E; Laikova KV; Plugatar YV
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Adipokinetic Peptides of Hemiptera: Structure, Function, and Evolutionary Trends.
    Gäde G; Marco HG
    Front Insect Sci; 2022; 2():891615. PubMed ID: 38468778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is agriculture driving the diversification of the Bemisia tabaci species complex (Hemiptera: Sternorrhyncha: Aleyrodidae)?: Dating, diversification and biogeographic evidence revealed.
    Boykin LM; Bell CD; Evans G; Small I; De Barro PJ
    BMC Evol Biol; 2013 Oct; 13():228. PubMed ID: 24138220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum.
    Hauser F; Cazzamali G; Williamson M; Park Y; Li B; Tanaka Y; Predel R; Neupert S; Schachtner J; Verleyen P; Grimmelikhuijzen CJ
    Front Neuroendocrinol; 2008 Jan; 29(1):142-65. PubMed ID: 18054377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving plant-resistance to insect-pests and pathogens: The new opportunities through targeted genome editing.
    Bisht DS; Bhatia V; Bhattacharya R
    Semin Cell Dev Biol; 2019 Dec; 96():65-76. PubMed ID: 31039395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ento(o)mics: the intersection of 'omic' approaches to decipher plant defense against sap-sucking insect pests.
    Zogli P; Pingault L; Grover S; Louis J
    Curr Opin Plant Biol; 2020 Aug; 56():153-161. PubMed ID: 32721874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insect pathogens as biological control agents: Back to the future.
    Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS
    J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and Sensilla of the Mouthparts of the Spotted Lanternfly Lycorma delicatula (Hemiptera: Fulgoromorpha: Fulgoridae), a Polyphagous Invasive Planthopper.
    Hao Y; Dietrich CH; Dai W
    PLoS One; 2016; 11(6):e0156640. PubMed ID: 27253390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cas9-Mediated Gene Editing Using Receptor-Mediated Ovary Transduction of Cargo (ReMOT) Control in
    Yu B; Dong S; Jiang X; Qiao L; Chen J; Li T; Pan G; Zhou Z; Li C
    Insects; 2023 Dec; 14(12):. PubMed ID: 38132605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.