These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35748323)

  • 1. Structural and cellular basis of vitamin K antagonism.
    Liu S; Shen G; Li W
    J Thromb Haemost; 2022 Sep; 20(9):1971-1983. PubMed ID: 35748323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Warfarin and vitamin K compete for binding to Phe55 in human VKOR.
    Czogalla KJ; Biswas A; Höning K; Hornung V; Liphardt K; Watzka M; Oldenburg J
    Nat Struct Mol Biol; 2017 Jan; 24(1):77-85. PubMed ID: 27941861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis of antagonizing the vitamin K catalytic cycle for anticoagulation.
    Liu S; Li S; Shen G; Sukumar N; Krezel AM; Li W
    Science; 2021 Jan; 371(6524):. PubMed ID: 33154105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural features determining the vitamin K epoxide reduction activity in the VKOR family of membrane oxidoreductases.
    Shen G; Li C; Cao Q; Megta AK; Li S; Gao M; Liu H; Shen Y; Chen Y; Yu H; Li S; Li W
    FEBS J; 2022 Aug; 289(15):4564-4579. PubMed ID: 35113495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of oral anticoagulants with vitamin K epoxide reductase in its native milieu.
    Chen X; Jin DY; Stafford DW; Tie JK
    Blood; 2018 Nov; 132(18):1974-1984. PubMed ID: 30089628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel vitamin K derived anticoagulant tolerant to genetic variations of vitamin K epoxide reductase.
    Chen X; Liu Y; Furukawa N; Jin DY; Paul Savage G; Stafford DW; Suhara Y; Williams CM; Tie JK
    J Thromb Haemost; 2021 Mar; 19(3):689-700. PubMed ID: 33314621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of warfarin resistance using transcription activator-like effector nucleases-mediated vitamin K epoxide reductase knockout HEK293 cells.
    Tie JK; Jin DY; Tie K; Stafford DW
    J Thromb Haemost; 2013 Aug; 11(8):1556-64. PubMed ID: 23710884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-directed mutagenesis of coumarin-type anticoagulant-sensitive VKORC1: evidence that highly conserved amino acids define structural requirements for enzymatic activity and inhibition by warfarin.
    Rost S; Fregin A; Hünerberg M; Bevans CG; Müller CR; Oldenburg J
    Thromb Haemost; 2005 Oct; 94(4):780-6. PubMed ID: 16270630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel insight into the mechanism of the vitamin K oxidoreductase (VKOR): electron relay through Cys43 and Cys51 reduces VKOR to allow vitamin K reduction and facilitation of vitamin K-dependent protein carboxylation.
    Rishavy MA; Usubalieva A; Hallgren KW; Berkner KL
    J Biol Chem; 2011 Mar; 286(9):7267-78. PubMed ID: 20978134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of a bacterial homologue of vitamin K epoxide reductase.
    Li W; Schulman S; Dutton RJ; Boyd D; Beckwith J; Rapoport TA
    Nature; 2010 Jan; 463(7280):507-12. PubMed ID: 20110994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures of an intramembrane vitamin K epoxide reductase homolog reveal control mechanisms for electron transfer.
    Liu S; Cheng W; Fowle Grider R; Shen G; Li W
    Nat Commun; 2014; 5():3110. PubMed ID: 24477003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Missense VKOR mutants exhibit severe warfarin resistance but lack VKCFD via shifting to an aberrantly reduced state.
    Li S; Sun J; Liu S; Zhou F; Gross ML; Li W
    Blood Adv; 2023 May; 7(10):2271-2282. PubMed ID: 36508285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional study of the vitamin K cycle in mammalian cells.
    Tie JK; Jin DY; Straight DL; Stafford DW
    Blood; 2011 Mar; 117(10):2967-74. PubMed ID: 21239697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cellular system for quantitation of vitamin K cycle activity: structure-activity effects on vitamin K antagonism by warfarin metabolites.
    Haque JA; McDonald MG; Kulman JD; Rettie AE
    Blood; 2014 Jan; 123(4):582-9. PubMed ID: 24297869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and function of vitamin K epoxide reductase.
    Tie JK; Stafford DW
    Vitam Horm; 2008; 78():103-30. PubMed ID: 18374192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assembly of the warfarin-sensitive vitamin K 2,3-epoxide reductase enzyme complex in the endoplasmic reticulum membrane.
    Cain D; Hutson SM; Wallin R
    J Biol Chem; 1997 Nov; 272(46):29068-75. PubMed ID: 9360981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The catalytic mechanism of vitamin K epoxide reduction in a cellular environment.
    Shen G; Cui W; Cao Q; Gao M; Liu H; Su G; Gross ML; Li W
    J Biol Chem; 2021; 296():100145. PubMed ID: 33273012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Warfarin and vitamin K epoxide reductase: a molecular accounting for observed inhibition.
    Wu S; Chen X; Jin DY; Stafford DW; Pedersen LG; Tie JK
    Blood; 2018 Aug; 132(6):647-657. PubMed ID: 29743176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cell-based high-throughput screen identifies drugs that cause bleeding disorders by off-targeting the vitamin K cycle.
    Chen X; Li C; Jin DY; Ingram B; Hao Z; Bai X; Stafford DW; Hu K; Tie JK
    Blood; 2020 Aug; 136(7):898-908. PubMed ID: 32374827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Species comparison of vitamin K1 2,3-epoxide reductase activity in vitro: kinetics and warfarin inhibition.
    Wilson CR; Sauer JM; Carlson GP; Wallin R; Ward MP; Hooser SB
    Toxicology; 2003 Aug; 189(3):191-8. PubMed ID: 12832152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.