BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35748421)

  • 1. Quasi-SMILES as a basis to build up models of endpoints for nanomaterials.
    Toropova AP; Toropov AA
    Environ Technol; 2023 Dec; 44(28):4460-4467. PubMed ID: 35748421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nano-QSAR in cell biology: Model of cell viability as a mathematical function of available eclectic data.
    Toropova AP; Toropov AA
    J Theor Biol; 2017 Mar; 416():113-118. PubMed ID: 28087422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of quasi-SMILES to build models based on quantitative results from experiments with nanomaterials.
    Toropov AA; Kjeldsen F; Toropova AP
    Chemosphere; 2022 Sep; 303(Pt 2):135086. PubMed ID: 35618064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of Quasi-SMILES and Monte Carlo Optimization to Develop Quantitative Feature Property/Activity Relationships (QFPR/QFAR) for Nanomaterials.
    Toropov AA; Rallo R; Toropova AP
    Curr Top Med Chem; 2015; 15(18):1837-44. PubMed ID: 25961527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does the Index of Ideality of Correlation Detect the Better Model Correctly?
    Toropova AP; Toropov AA
    Mol Inform; 2019 Aug; 38(8-9):e1800157. PubMed ID: 30725522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Silico Simulation of Impacts of Metal Nano-Oxides on Cell Viability in THP-1 Cells Based on the Correlation Weights of the Fragments of Molecular Structures and Codes of Experimental Conditions Represented by Means of Quasi-SMILES.
    Toropova AP; Toropov AA; Fjodorova N
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanomaterials: Quasi-SMILES as a flexible basis for regulation and environmental risk assessment.
    Toropova AP; Toropov AA
    Sci Total Environ; 2022 Jun; 823():153747. PubMed ID: 35149067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation intensity index: Building up models for mutagenicity of silver nanoparticles.
    Toropov AA; Toropova AP
    Sci Total Environ; 2020 Oct; 737():139720. PubMed ID: 32554036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal descriptor as a translator of eclectic data into prediction of cytotoxicity for metal oxide nanoparticles under different conditions.
    Toropova AP; Toropov AA; Rallo R; Leszczynska D; Leszczynski J
    Ecotoxicol Environ Saf; 2015 Feb; 112():39-45. PubMed ID: 25463851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quasi-SMILES: Self-consistent models for toxicity of organic chemicals to tadpoles.
    Toropov AA; Di Nicola MR; Toropova AP; Roncaglioni A; Dorne JLCM; Benfenati E
    Chemosphere; 2023 Jan; 312(Pt 1):137224. PubMed ID: 36375610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CORAL: Predictive models for cytotoxicity of functionalized nanozeolites based on quasi-SMILES.
    Leone C; Bertuzzi EE; Toropova AP; Toropov AA; Benfenati E
    Chemosphere; 2018 Nov; 210():52-56. PubMed ID: 29986223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical modeling of cytotoxicity of metal oxide nanoparticles using the index of ideality correlation criteria.
    Ahmadi S
    Chemosphere; 2020 Mar; 242():125192. PubMed ID: 31677509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The system of self-consistent models for the uptake of nanoparticles in PaCa2 cancer cells.
    Toropov AA; Toropova AP
    Nanotoxicology; 2021 Sep; 15(7):995-1004. PubMed ID: 34297644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CORAL and Nano-QFAR: Quantitative feature - Activity relationships (QFAR) for bioavailability of nanoparticles (ZnO, CuO, Co
    Toropova AP; Toropov AA; Leszczynska D; Leszczynski J
    Ecotoxicol Environ Saf; 2017 May; 139():404-407. PubMed ID: 28192776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of quasi-SMILES to the model of gold-nanoparticles uptake in A549 cells.
    Toropova AP; Toropov AA; Leszczynska D; Leszczynski J
    Comput Biol Med; 2021 Sep; 136():104720. PubMed ID: 34364261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal nano-descriptors as translators of eclectic data into prediction of the cell membrane damage by means of nano metal-oxides.
    Toropova AP; Toropov AA; Benfenati E; Korenstein R; Leszczynska D; Leszczynski J
    Environ Sci Pollut Res Int; 2015 Jan; 22(1):745-57. PubMed ID: 25223357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation intensity index: mathematical modeling of cytotoxicity of metal oxide nanoparticles.
    Ahmadi S; Toropova AP; Toropov AA
    Nanotoxicology; 2020 Oct; 14(8):1118-1126. PubMed ID: 32877261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quasi-SMILES and nano-QFAR: united model for mutagenicity of fullerene and MWCNT under different conditions.
    Toropov AA; Toropova AP
    Chemosphere; 2015 Nov; 139():18-22. PubMed ID: 26026259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo technique to study the adsorption affinity of azo dyes by applying new statistical criteria of the predictive potential.
    Toropova AP; Toropov AA; Roncaglioni A; Benfenati E
    SAR QSAR Environ Res; 2022 Aug; 33(8):621-630. PubMed ID: 35924764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Monte Carlo Method as a Tool to Build up Predictive QSPR/QSAR.
    Toropov AA; Toropova AP
    Curr Comput Aided Drug Des; 2020; 16(3):197-206. PubMed ID: 30919781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.