These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35748512)

  • 21. Accelerating and stabilizing the convergence of vibrational self-consistent field calculations via the direct inversion of the iterative subspace (vDIIS) algorithm.
    Yang EL; Spencer RJ; Zhanserkeev AA; Talbot JJ; Steele RP
    J Chem Phys; 2023 Aug; 159(8):. PubMed ID: 37606324
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Implementation of the diagonalization-free algorithm in the self-consistent field procedure within the four-component relativistic scheme.
    Hrdá M; Kulich T; Repiský M; Noga J; Malkina OL; Malkin VG
    J Comput Chem; 2014 Sep; 35(23):1725-37. PubMed ID: 24995728
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Sparse Self-Consistent Field Algorithm and Its Parallel Implementation: Application to Density-Functional-Based Tight Binding.
    Scemama A; Renon N; Rapacioli M
    J Chem Theory Comput; 2014 Jun; 10(6):2344-54. PubMed ID: 26580754
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The trust-region self-consistent field method in Kohn-Sham density-functional theory.
    Thøgersen L; Olsen J; Köhn A; Jørgensen P; Sałek P; Helgaker T
    J Chem Phys; 2005 Aug; 123(7):074103. PubMed ID: 16229555
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The trust-region self-consistent field method: towards a black-box optimization in Hartree-Fock and Kohn-Sham theories.
    Thøgersen L; Olsen J; Yeager D; Jørgensen P; Sałek P; Helgaker T
    J Chem Phys; 2004 Jul; 121(1):16-27. PubMed ID: 15260518
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Iterative subspace algorithms for finite-temperature solution of Dyson equation.
    Pokhilko P; Yeh CN; Zgid D
    J Chem Phys; 2022 Mar; 156(9):094101. PubMed ID: 35259903
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The augmented Roothaan-Hall method for optimizing Hartree-Fock and Kohn-Sham density matrices.
    Høst S; Olsen J; Jansík B; Thøgersen L; Jørgensen P; Helgaker T
    J Chem Phys; 2008 Sep; 129(12):124106. PubMed ID: 19045005
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Massively Parallel Implementation of Divide-and-Conquer Jacobi Iterations Using Particle-Mesh Ewald for Force Field Polarization.
    Nocito D; Beran GJO
    J Chem Theory Comput; 2018 Jul; 14(7):3633-3642. PubMed ID: 29847125
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MPI/OpenMP hybrid parallel algorithm for resolution of identity second-order Møller-Plesset perturbation calculation of analytical energy gradient for massively parallel multicore supercomputers.
    Katouda M; Nakajima T
    J Comput Chem; 2017 Mar; 38(8):489-507. PubMed ID: 28133838
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pseudodiagonalization Method for Accelerating Nonlinear Subspace Diagonalization in Density Functional Theory.
    Shah S; Suryanarayana P; Chow E
    J Chem Theory Comput; 2022 Jun; 18(6):3474-3482. PubMed ID: 35608960
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of parallel density functional program using distributed matrix to calculate all-electron canonical wavefunction of large molecules.
    Inaba T; Sato F
    J Comput Chem; 2007 Apr; 28(5):984-95. PubMed ID: 17269119
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GPU algorithms for density matrix methods on MOPAC: linear scaling electronic structure calculations for large molecular systems.
    Maia JDC; Dos Anjos Formiga Cabral L; Rocha GB
    J Mol Model; 2020 Oct; 26(11):313. PubMed ID: 33090341
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ab initio electronic structure calculations using a real-space Chebyshev-filtered subspace iteration method.
    Xu Q; Wang S; Xue L; Shao X; Gao P; Lv J; Wang Y; Ma Y
    J Phys Condens Matter; 2019 Nov; 31(45):455901. PubMed ID: 31207590
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accelerating the weighted histogram analysis method by direct inversion in the iterative subspace.
    Zhang C; Lai CL; Pettitt BM
    Mol Simul; 2016; 42(13):1079-1089. PubMed ID: 27453632
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computing the Density Matrix in Electronic Structure Theory on Graphics Processing Units.
    Cawkwell MJ; Sanville EJ; Mniszewski SM; Niklasson AM
    J Chem Theory Comput; 2012 Nov; 8(11):4094-101. PubMed ID: 26605576
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of self-consistent field convergence acceleration techniques.
    Garza AJ; Scuseria GE
    J Chem Phys; 2012 Aug; 137(5):054110. PubMed ID: 22894335
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Discarding Information from Previous Iterations in an Optimal Way To Solve the Coupled Cluster Amplitude Equations.
    Ettenhuber P; Jørgensen P
    J Chem Theory Comput; 2015 Apr; 11(4):1518-24. PubMed ID: 26574363
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A combined first- and second-order optimization method for improving convergence of Hartree-Fock and Kohn-Sham calculations.
    Kreplin DA; Werner HJ
    J Chem Phys; 2022 Jun; 156(21):214111. PubMed ID: 35676156
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stacked-Bloch-wave electron diffraction simulations using GPU acceleration.
    Pennington RS; Wang F; Koch CT
    Ultramicroscopy; 2014 Jun; 141():32-7. PubMed ID: 24705178
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coupled Cluster Theory on Graphics Processing Units I. The Coupled Cluster Doubles Method.
    DePrince AE; Hammond JR
    J Chem Theory Comput; 2011 May; 7(5):1287-95. PubMed ID: 26610123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.