These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 35748706)

  • 1. Deep learning models for RNA secondary structure prediction (probably) do not generalize across families.
    Szikszai M; Wise M; Datta A; Ward M; Mathews DH
    Bioinformatics; 2022 Aug; 38(16):3892-3899. PubMed ID: 35748706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive evaluation of deep learning architectures for prediction of DNA/RNA sequence binding specificities.
    Trabelsi A; Chaabane M; Ben-Hur A
    Bioinformatics; 2019 Jul; 35(14):i269-i277. PubMed ID: 31510640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling positional effects of regulatory sequences with spline transformations increases prediction accuracy of deep neural networks.
    Avsec Ž; Barekatain M; Cheng J; Gagneur J
    Bioinformatics; 2018 Apr; 34(8):1261-1269. PubMed ID: 29155928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. THPLM: a sequence-based deep learning framework for protein stability changes prediction upon point variations using pretrained protein language model.
    Gong J; Jiang L; Chen Y; Zhang Y; Li X; Ma Z; Fu Z; He F; Sun P; Ren Z; Tian M
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37874953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ReGeNNe: genetic pathway-based deep neural network using canonical correlation regularizer for disease prediction.
    Sharma D; Xu W
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37963055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expectation pooling: an effective and interpretable pooling method for predicting DNA-protein binding.
    Luo X; Tu X; Ding Y; Gao G; Deng M
    Bioinformatics; 2020 Mar; 36(5):1405-1412. PubMed ID: 31598637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AliNA - a deep learning program for RNA secondary structure prediction.
    Nasaev SS; Mukanov AR; Kuznetsov II; Veselovsky AV
    Mol Inform; 2023 Dec; 42(12):e202300113. PubMed ID: 37710142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genotype sampling for deep-learning assisted experimental mapping of a combinatorially complete fitness landscape.
    Wagner A
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38745436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA contact prediction by data efficient deep learning.
    Taubert O; von der Lehr F; Bazarova A; Faber C; Knechtges P; Weiel M; Debus C; Coquelin D; Basermann A; Streit A; Kesselheim S; Götz M; Schug A
    Commun Biol; 2023 Sep; 6(1):913. PubMed ID: 37674020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell type-specific interpretation of noncoding variants using deep learning-based methods.
    Sindeeva M; Chekanov N; Avetisian M; Shashkova TI; Baranov N; Malkin E; Lapin A; Kardymon O; Fishman V
    Gigascience; 2023 Mar; 12():. PubMed ID: 36971292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PROSTATA: a framework for protein stability assessment using transformers.
    Umerenkov D; Nikolaev F; Shashkova TI; Strashnov PV; Sindeeva M; Shevtsov A; Ivanisenko NV; Kardymon OL
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37935419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting cross-tissue hormone-gene relations using balanced word embeddings.
    Jadhav A; Kumar T; Raghavendra M; Loganathan T; Narayanan M
    Bioinformatics; 2022 Oct; 38(20):4771-4781. PubMed ID: 36000859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaling cross-tissue single-cell annotation models.
    Fischer F; Fischer DS; Biederstedt E; Villani AC; Theis FJ
    bioRxiv; 2023 Oct; ():. PubMed ID: 37873298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. lociPARSE: a locality-aware invariant point attention model for scoring RNA 3D structures.
    Tarafder S; Bhattacharya D
    bioRxiv; 2024 Jul; ():. PubMed ID: 37961488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EnzymeNet: residual neural networks model for Enzyme Commission number prediction.
    Watanabe N; Yamamoto M; Murata M; Kuriya Y; Araki M
    Bioinform Adv; 2023; 3(1):vbad173. PubMed ID: 38075476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning boosts RNA prediction.
    Pan J
    Nat Comput Sci; 2021 Sep; 1(9):564. PubMed ID: 38217130
    [No Abstract]   [Full Text] [Related]  

  • 17. A riboswitch separated from its ribosome-binding site still regulates translation.
    Schroeder GM; Akinyemi O; Malik J; Focht CM; Pritchett EM; Baker CD; McSally JP; Jenkins JL; Mathews DH; Wedekind JE
    Nucleic Acids Res; 2023 Mar; 51(5):2464-2484. PubMed ID: 36762498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SpanSeq: similarity-based sequence data splitting method for improved development and assessment of deep learning projects.
    Ferrer Florensa A; Almagro Armenteros JJ; Nielsen H; Aarestrup FM; Clausen PTLC
    NAR Genom Bioinform; 2024 Sep; 6(3):lqae106. PubMed ID: 39157582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of RNA structures and their roles in RNA functions.
    Cao X; Zhang Y; Ding Y; Wan Y
    Nat Rev Mol Cell Biol; 2024 Oct; 25(10):784-801. PubMed ID: 38926530
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.